Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Matthew D. Determan
Documents disponibles écrits par cet auteur
Affiner la rechercheAmmonia–water desorption heat and mass transfer in microchannel devices / Matthew D. Determan in International journal of refrigeration, Vol. 34 N° 5 (Août 2011)
[article]
in International journal of refrigeration > Vol. 34 N° 5 (Août 2011) . - pp. 1197-1208
Titre : Ammonia–water desorption heat and mass transfer in microchannel devices Titre original : Transfert de chaleur et de masse dans un désorbeur à ammoniac-eau à microcanaux Type de document : texte imprimé Auteurs : Matthew D. Determan, Auteur ; Srinivas Garimella, Auteur Année de publication : 2011 Article en page(s) : pp. 1197-1208 Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Desorption Miniaturization Mass transfer Microchannel Heat pump Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : This paper presents the results of an experimentally validated model for the prediction of local heat and mass transfer rates in a microchannel ammonia–water desorber. The desorber is an extremely compact 178 mm × 178 mm × 0.508 m tall component capable of transferring the required heat load (∼17.5 kW) for a residential heat pump system. The model predicts temperature, concentration and mass flow rate profiles through the desorber, as well as the effective wetted area of the heat transfer surface. Previous experimental and analytical research by the authors demonstrated the performance of this same microchannel geometry as an absorber. Together, these studies show that this compact geometry is suitable for all components in an absorption heat pump, which would enable the increased use of absorption technology in the small-capacity heat pump market. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S014070071100048X [article] Ammonia–water desorption heat and mass transfer in microchannel devices = Transfert de chaleur et de masse dans un désorbeur à ammoniac-eau à microcanaux [texte imprimé] / Matthew D. Determan, Auteur ; Srinivas Garimella, Auteur . - 2011 . - pp. 1197-1208.
Génie Mécanique
Langues : Anglais (eng)
in International journal of refrigeration > Vol. 34 N° 5 (Août 2011) . - pp. 1197-1208
Mots-clés : Desorption Miniaturization Mass transfer Microchannel Heat pump Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : This paper presents the results of an experimentally validated model for the prediction of local heat and mass transfer rates in a microchannel ammonia–water desorber. The desorber is an extremely compact 178 mm × 178 mm × 0.508 m tall component capable of transferring the required heat load (∼17.5 kW) for a residential heat pump system. The model predicts temperature, concentration and mass flow rate profiles through the desorber, as well as the effective wetted area of the heat transfer surface. Previous experimental and analytical research by the authors demonstrated the performance of this same microchannel geometry as an absorber. Together, these studies show that this compact geometry is suitable for all components in an absorption heat pump, which would enable the increased use of absorption technology in the small-capacity heat pump market. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S014070071100048X Heat - and mass - transfer kinetics of carbon dioxide capture using sorbent - loaded hollow fibers / Matthew D. Determan in Industrial & engineering chemistry research, Vol. 51 N° 1 (Janvier 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 1 (Janvier 2012) . - pp. 495–502
Titre : Heat - and mass - transfer kinetics of carbon dioxide capture using sorbent - loaded hollow fibers Type de document : texte imprimé Auteurs : Matthew D. Determan, Auteur ; Dhruv C. Hoysall, Auteur ; Srinivas Garimella, Auteur Année de publication : 2012 Article en page(s) : pp. 495–502 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Mass transfer Kinetics Résumé : Sorbent-loaded hollow fibers operating in a rapid temperature-swing adsorption cycle are a unique platform for the capture of CO2 from power plants. They are ideally suited for heat recovery strategies that will reduce the operating costs of capture facilities. Accurate estimates of the fiber-level heat- and mass-transfer kinetics are critical for the design and implementation of these systems. A detailed coupled heat- and mass-transfer model of the adsorption process in sorbent-loaded fibers is developed here. The effects of varying fiber geometry on the heat- and mass-transfer kinetics are presented. The rapid diffusion and adsorption in the fiber and the direct cooling of the fibers will enable efficient capture of CO2, as well as substantial recovery of the sensible heat capacity of the beds, thus reducing energy costs of the thermal-swing adsorption process. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie201380r [article] Heat - and mass - transfer kinetics of carbon dioxide capture using sorbent - loaded hollow fibers [texte imprimé] / Matthew D. Determan, Auteur ; Dhruv C. Hoysall, Auteur ; Srinivas Garimella, Auteur . - 2012 . - pp. 495–502.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 1 (Janvier 2012) . - pp. 495–502
Mots-clés : Mass transfer Kinetics Résumé : Sorbent-loaded hollow fibers operating in a rapid temperature-swing adsorption cycle are a unique platform for the capture of CO2 from power plants. They are ideally suited for heat recovery strategies that will reduce the operating costs of capture facilities. Accurate estimates of the fiber-level heat- and mass-transfer kinetics are critical for the design and implementation of these systems. A detailed coupled heat- and mass-transfer model of the adsorption process in sorbent-loaded fibers is developed here. The effects of varying fiber geometry on the heat- and mass-transfer kinetics are presented. The rapid diffusion and adsorption in the fiber and the direct cooling of the fibers will enable efficient capture of CO2, as well as substantial recovery of the sensible heat capacity of the beds, thus reducing energy costs of the thermal-swing adsorption process. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie201380r Microchannel component technology for system-wide application in ammonia/water absorption heat pumps / Srinivas Garimella in International journal of refrigeration, Vol. 34 N° 5 (Août 2011)
[article]
in International journal of refrigeration > Vol. 34 N° 5 (Août 2011) . - pp. 1184-1196
Titre : Microchannel component technology for system-wide application in ammonia/water absorption heat pumps Titre original : Technologie des composantes des minicanaux à appliquer aux systèmes à pompe à chaleur à absorption à ammoniac/eau Type de document : texte imprimé Auteurs : Srinivas Garimella, Auteur ; Matthew D. Determan, Auteur ; J. Mark Meacham, Auteur Année de publication : 2011 Article en page(s) : pp. 1184-1196 Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Absorption Miniaturization Heat transfer Mass transfer Microchannel Falling film Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : A novel miniaturization technology for binary-fluid heat and mass exchange was developed and numerous components were fabricated for demonstration as different parts of an ammonia/water absorption heat pump. Short lengths of microchannel tubes are placed in an array, with several such arrays stacked vertically. The ammonia/water solution flows in falling film/droplet mode on the outside of the tubes while coupling fluid flows through the microchannels. Coupling fluid heat transfer coefficients are extremely high due to the use of microchannel tubes. Effective vapor–solution contact on the absorption side minimizes heat and mass transfer resistances. This concept addresses all the requirements for absorber design in an extremely compact geometry. The technology is suitable for almost all absorption heat pump components (absorbers, desorbers, condensers, rectifiers, and evaporators) and for a wide range of binary-fluid processes. The development of several components for absorption and desorption at different capacities using this technology is reported here. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700711000685 [article] Microchannel component technology for system-wide application in ammonia/water absorption heat pumps = Technologie des composantes des minicanaux à appliquer aux systèmes à pompe à chaleur à absorption à ammoniac/eau [texte imprimé] / Srinivas Garimella, Auteur ; Matthew D. Determan, Auteur ; J. Mark Meacham, Auteur . - 2011 . - pp. 1184-1196.
Génie Mécanique
Langues : Anglais (eng)
in International journal of refrigeration > Vol. 34 N° 5 (Août 2011) . - pp. 1184-1196
Mots-clés : Absorption Miniaturization Heat transfer Mass transfer Microchannel Falling film Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : A novel miniaturization technology for binary-fluid heat and mass exchange was developed and numerous components were fabricated for demonstration as different parts of an ammonia/water absorption heat pump. Short lengths of microchannel tubes are placed in an array, with several such arrays stacked vertically. The ammonia/water solution flows in falling film/droplet mode on the outside of the tubes while coupling fluid flows through the microchannels. Coupling fluid heat transfer coefficients are extremely high due to the use of microchannel tubes. Effective vapor–solution contact on the absorption side minimizes heat and mass transfer resistances. This concept addresses all the requirements for absorber design in an extremely compact geometry. The technology is suitable for almost all absorption heat pump components (absorbers, desorbers, condensers, rectifiers, and evaporators) and for a wide range of binary-fluid processes. The development of several components for absorption and desorption at different capacities using this technology is reported here. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700711000685