Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Harry Asada
Documents disponibles écrits par cet auteur
Affiner la rechercheStochastic recruitment control of large ensemble systems with limited feedback / Lael U. Odhner in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 4 (Juillet 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 4 (Juillet 2010) . - 09 p.
Titre : Stochastic recruitment control of large ensemble systems with limited feedback Type de document : texte imprimé Auteurs : Lael U. Odhner, Auteur ; Harry Asada, Auteur Année de publication : 2010 Article en page(s) : 09 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Actuators Biocontrol Biomechanics Control system synthesis Feedback Markov processes Prosthetics Index. décimale : 629.8 Résumé : A new approach to controlling the ensemble behavior of many identical agents is presented in this paper, inspired by motor recruitment in skeletal muscles. A group of finite state agents responds randomly to broadcast commands, each producing a state-dependent output that is measured in aggregate. Despite the lack of feedback signal and initial state information, this control architecture allows a single central controller to direct the aggregate output of the ensemble toward a desired value. First, the system is modeled as an ensemble of statistically independent, identically distributed, binary-state Markov processes with state transition probabilities designated by a central controller. Second, steady-state behavior, convergence rate, and variance of the aggregate output, i.e., the total number of recruited agents, are analyzed, and design trade-offs in terms of accuracy, convergence speed, and the number of spurious transitions are made. Third, a limited feedback signal, only detecting if the output has reached a goal, is added to the system, and the recruitment controller is designed as a stochastic shortest path problem. Optimal convergence rate and associated transition probabilities are obtained. Finally, the theoretical results are verified and demonstrated with both numerical simulation and control of an artificial muscle actuator made up of 60 binary shape memory alloy motor units. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013 [...] [article] Stochastic recruitment control of large ensemble systems with limited feedback [texte imprimé] / Lael U. Odhner, Auteur ; Harry Asada, Auteur . - 2010 . - 09 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 4 (Juillet 2010) . - 09 p.
Mots-clés : Actuators Biocontrol Biomechanics Control system synthesis Feedback Markov processes Prosthetics Index. décimale : 629.8 Résumé : A new approach to controlling the ensemble behavior of many identical agents is presented in this paper, inspired by motor recruitment in skeletal muscles. A group of finite state agents responds randomly to broadcast commands, each producing a state-dependent output that is measured in aggregate. Despite the lack of feedback signal and initial state information, this control architecture allows a single central controller to direct the aggregate output of the ensemble toward a desired value. First, the system is modeled as an ensemble of statistically independent, identically distributed, binary-state Markov processes with state transition probabilities designated by a central controller. Second, steady-state behavior, convergence rate, and variance of the aggregate output, i.e., the total number of recruited agents, are analyzed, and design trade-offs in terms of accuracy, convergence speed, and the number of spurious transitions are made. Third, a limited feedback signal, only detecting if the output has reached a goal, is added to the system, and the recruitment controller is designed as a stochastic shortest path problem. Optimal convergence rate and associated transition probabilities are obtained. Finally, the theoretical results are verified and demonstrated with both numerical simulation and control of an artificial muscle actuator made up of 60 binary shape memory alloy motor units. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013 [...]