Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur J. Roshanian
Documents disponibles écrits par cet auteur
Affiner la rechercheAn adjustable model reference adaptive control for a flexible launch vehicle / A. M. Khoshnood in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 4 (Juillet 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 4 (Juillet 2010) . - 07 p.
Titre : An adjustable model reference adaptive control for a flexible launch vehicle Type de document : texte imprimé Auteurs : A. M. Khoshnood, Auteur ; J. Roshanian, Auteur ; A. A. Jafari, Auteur Année de publication : 2010 Article en page(s) : 07 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Adaptive control Aircraft Flexible structures Stability Vibration control Index. décimale : 629.8 Résumé : Flexibility and aeroelastic behaviors in large space structures can lead to degradation of control system stability and performance. The model reference adaptive notch filter is an effective methodology used and implemented for reducing such effects. In this approach, designing a model reference for adaptive control algorithm in a flight device such as a launch vehicle is very important. In this way, the vibrations resulting from the structure flexibility mostly affects the pitch channel, and its influences on the yaw channel are negligible. This property is used and also the symmetrical behavior of the yaw and pitch channels. In this paper, by using this property and also the symmetrical behavior of the yaw and pitch channels, a new model reference using identification on the yaw channel is proposed. This model behaves very similar to the rigid body dynamic of the pitch channel and can be used as a model reference to control the vibrational effects. Simulation results illustrated applies the proposed algorithm and considerably reduces the vibrations in the pitch channel. Moreover, the main advantage of this new method is the online tuning of the model reference against unforeseen variations in the parameters of the rigid launch vehicle, which has not been considered in the previous works. Finally, robustness of the new control system in the presence of asymmetric behavior is investigated. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] An adjustable model reference adaptive control for a flexible launch vehicle [texte imprimé] / A. M. Khoshnood, Auteur ; J. Roshanian, Auteur ; A. A. Jafari, Auteur . - 2010 . - 07 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 4 (Juillet 2010) . - 07 p.
Mots-clés : Adaptive control Aircraft Flexible structures Stability Vibration control Index. décimale : 629.8 Résumé : Flexibility and aeroelastic behaviors in large space structures can lead to degradation of control system stability and performance. The model reference adaptive notch filter is an effective methodology used and implemented for reducing such effects. In this approach, designing a model reference for adaptive control algorithm in a flight device such as a launch vehicle is very important. In this way, the vibrations resulting from the structure flexibility mostly affects the pitch channel, and its influences on the yaw channel are negligible. This property is used and also the symmetrical behavior of the yaw and pitch channels. In this paper, by using this property and also the symmetrical behavior of the yaw and pitch channels, a new model reference using identification on the yaw channel is proposed. This model behaves very similar to the rigid body dynamic of the pitch channel and can be used as a model reference to control the vibrational effects. Simulation results illustrated applies the proposed algorithm and considerably reduces the vibrations in the pitch channel. Moreover, the main advantage of this new method is the online tuning of the model reference against unforeseen variations in the parameters of the rigid launch vehicle, which has not been considered in the previous works. Finally, robustness of the new control system in the presence of asymmetric behavior is investigated. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...]