Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Annemieke Van de Runstraat
Documents disponibles écrits par cet auteur
Affiner la rechercheDevelopment of an online monitoring method of a CO2 capture process / Leon F. G. Geers in Industrial & engineering chemistry research, Vol. 50 N° 15 (Août 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 15 (Août 2011) . - pp. 9175-9180
Titre : Development of an online monitoring method of a CO2 capture process Type de document : texte imprimé Auteurs : Leon F. G. Geers, Auteur ; Annemieke Van de Runstraat, Auteur ; Ralph Joh, Auteur Année de publication : 2011 Article en page(s) : pp. 9175-9180 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Carbon dioxide Surveillance Résumé : One possible way to reduce our carbon footprint is using postcombustion capture (PCC) processes to remove CO2 from flue gases. Because of the highly dynamic characteristics of such processes, real-time performance monitoring is a very complex task. This paper presents a method for monitoring the concentrations of CO2, SOx, and a CO2 capturing agent (β-alanine) during a process in a PCC pilot plant. A partial least-squares (PLS) model was built to estimate these concentrations from Fourier transform infrared (FTIR) spectra of the capturing solvent during processing in a model PCC plant. The model predicts the species concentrations to within 0.05 mol/L, provided that the concentrations stayed within the calibration window of the model. Next to that, it is paramount that the solutions used for model calibration consist of the same solution matrix as the real process medium. The model was eventually used to monitor an emulated PCC process online during 24 h of processing. This demonstrated that events such as saturation of the capturing agent with CO2, water replenishment, and switching to safety protocols can be followed accurately. The combination of an FTIR spectrometer and a PLS model can be used to extract process information in real-time. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24395864 [article] Development of an online monitoring method of a CO2 capture process [texte imprimé] / Leon F. G. Geers, Auteur ; Annemieke Van de Runstraat, Auteur ; Ralph Joh, Auteur . - 2011 . - pp. 9175-9180.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 15 (Août 2011) . - pp. 9175-9180
Mots-clés : Carbon dioxide Surveillance Résumé : One possible way to reduce our carbon footprint is using postcombustion capture (PCC) processes to remove CO2 from flue gases. Because of the highly dynamic characteristics of such processes, real-time performance monitoring is a very complex task. This paper presents a method for monitoring the concentrations of CO2, SOx, and a CO2 capturing agent (β-alanine) during a process in a PCC pilot plant. A partial least-squares (PLS) model was built to estimate these concentrations from Fourier transform infrared (FTIR) spectra of the capturing solvent during processing in a model PCC plant. The model predicts the species concentrations to within 0.05 mol/L, provided that the concentrations stayed within the calibration window of the model. Next to that, it is paramount that the solutions used for model calibration consist of the same solution matrix as the real process medium. The model was eventually used to monitor an emulated PCC process online during 24 h of processing. This demonstrated that events such as saturation of the capturing agent with CO2, water replenishment, and switching to safety protocols can be followed accurately. The combination of an FTIR spectrometer and a PLS model can be used to extract process information in real-time. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24395864