Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur L. V. Van der Ham
Documents disponibles écrits par cet auteur
Affiner la rechercheImproving the heat integration of distillation columns in a cryogenic air separation unit / L. V. Van der Ham in Industrial & engineering chemistry research, Vol. 50 N° 15 (Août 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 15 (Août 2011) . - pp. 9324-9338
Titre : Improving the heat integration of distillation columns in a cryogenic air separation unit Type de document : texte imprimé Auteurs : L. V. Van der Ham, Auteur ; S. Kjelstrup, Auteur Année de publication : 2011 Article en page(s) : pp. 9324-9338 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Cryogenics Distillation column Heat recovery Résumé : The distillation columns of a two-column cryogenic air separation unit (ASU) are responsible for a considerable part of the total ASU inefficiencies. The efficiency of a conventional distillation column can be increased by distributing the reboiler and condenser duties over a larger part of its length. In an ASU, this can be realized by moving the low-pressure column (LPC) down along the high-pressure column (HPC), thus increasing the number of heat-integrated stages (HI stages). We present an assessment of the effect that such an intensification of the heat integration has on the performance of the ASU distillation section, using the entropy production as performance criterion. When keeping the operating pressures fixed, the entropy production in the LPC is replaced by entropy production in the HI stages, without affecting the total entropy production. Reducing the pressure ratio enables a reduction in the LPC entropy production without increasing the contribution of the HI stages. For a probable value of the heat-transfer capacity per stage, increasing the pressure in the LPC results in a decrease of 21% in the total entropy production, while decreasing the pressure in the HPC results in a decrease of 23%. Decreasing the pressure in the HPC when using an opportunistic heat-transfer capacity yields a decrease of 31%. The reductions in entropy production materialize eventually as changes in the required ASU compressor, pump, and expander duties. Compared to the addition of either an additional heat exchanger or an additional distillation column, the use of HI stages seems to be the most promising method for improving the thermodynamic performance of a cryogenic ASU. More-detailed experimental data are required to simulate heat-integrated distillation columns accurately. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24395877 [article] Improving the heat integration of distillation columns in a cryogenic air separation unit [texte imprimé] / L. V. Van der Ham, Auteur ; S. Kjelstrup, Auteur . - 2011 . - pp. 9324-9338.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 15 (Août 2011) . - pp. 9324-9338
Mots-clés : Cryogenics Distillation column Heat recovery Résumé : The distillation columns of a two-column cryogenic air separation unit (ASU) are responsible for a considerable part of the total ASU inefficiencies. The efficiency of a conventional distillation column can be increased by distributing the reboiler and condenser duties over a larger part of its length. In an ASU, this can be realized by moving the low-pressure column (LPC) down along the high-pressure column (HPC), thus increasing the number of heat-integrated stages (HI stages). We present an assessment of the effect that such an intensification of the heat integration has on the performance of the ASU distillation section, using the entropy production as performance criterion. When keeping the operating pressures fixed, the entropy production in the LPC is replaced by entropy production in the HI stages, without affecting the total entropy production. Reducing the pressure ratio enables a reduction in the LPC entropy production without increasing the contribution of the HI stages. For a probable value of the heat-transfer capacity per stage, increasing the pressure in the LPC results in a decrease of 21% in the total entropy production, while decreasing the pressure in the HPC results in a decrease of 23%. Decreasing the pressure in the HPC when using an opportunistic heat-transfer capacity yields a decrease of 31%. The reductions in entropy production materialize eventually as changes in the required ASU compressor, pump, and expander duties. Compared to the addition of either an additional heat exchanger or an additional distillation column, the use of HI stages seems to be the most promising method for improving the thermodynamic performance of a cryogenic ASU. More-detailed experimental data are required to simulate heat-integrated distillation columns accurately. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24395877