Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Cheri Shakiban
Documents disponibles écrits par cet auteur
Affiner la rechercheBrachistochrone on a 1D curved surface using optimal control / Hennessey, Michael P. in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 3 (Mai 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 3 (Mai 2010) . - 05 p.
Titre : Brachistochrone on a 1D curved surface using optimal control Type de document : texte imprimé Auteurs : Hennessey, Michael P., Auteur ; Cheri Shakiban, Auteur Année de publication : 2010 Article en page(s) : 05 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Boundary-value problems Calculus Curve fitting Iterative methods Mechanics Open loop systems Optimal control State feedback Index. décimale : 629.8 Résumé : The brachistochrone for a steerable particle moving on a 1D curved surface in a gravity field is solved using an optimal control formulation with state feedback. The process begins with a derivation of a fourth-order open-loop plant model with the system input being the body yaw rate. Solving for the minimum-time control law entails introducing four costates and solving the Euler–Lagrange equations, with the Hamiltonian being stationary with respect to the control. Also, since the system is autonomous, the Hamiltonian must be zero. A two-point boundary value problem results with a transversality condition, and its solution requires iteration of the initial bearing angle so the integrated trajectory runs through the final point. For this choice of control, the Legendre–Clebsch necessary condition is not satisfied. However, the k=1 generalized Legendre–Clebsch necessary condition from singular control theory is satisfied for all numerical simulations performed, and optimality is assured. Simulations in MATLAB® exercise the theory developed and illustrate application such as to ski racing and minimizing travel time over either a concave or undulating surface when starting from rest. Lastly, a control law singularity in particle speed is overcome numerically. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Brachistochrone on a 1D curved surface using optimal control [texte imprimé] / Hennessey, Michael P., Auteur ; Cheri Shakiban, Auteur . - 2010 . - 05 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 3 (Mai 2010) . - 05 p.
Mots-clés : Boundary-value problems Calculus Curve fitting Iterative methods Mechanics Open loop systems Optimal control State feedback Index. décimale : 629.8 Résumé : The brachistochrone for a steerable particle moving on a 1D curved surface in a gravity field is solved using an optimal control formulation with state feedback. The process begins with a derivation of a fourth-order open-loop plant model with the system input being the body yaw rate. Solving for the minimum-time control law entails introducing four costates and solving the Euler–Lagrange equations, with the Hamiltonian being stationary with respect to the control. Also, since the system is autonomous, the Hamiltonian must be zero. A two-point boundary value problem results with a transversality condition, and its solution requires iteration of the initial bearing angle so the integrated trajectory runs through the final point. For this choice of control, the Legendre–Clebsch necessary condition is not satisfied. However, the k=1 generalized Legendre–Clebsch necessary condition from singular control theory is satisfied for all numerical simulations performed, and optimality is assured. Simulations in MATLAB® exercise the theory developed and illustrate application such as to ski racing and minimizing travel time over either a concave or undulating surface when starting from rest. Lastly, a control law singularity in particle speed is overcome numerically. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...]