Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur D. Fratta
Documents disponibles écrits par cet auteur
Affiner la rechercheMechanistic corrections for determining the resilient modulus of base course materials based on elastic wave measurements / C. C. Schuettpelz in Journal of geotechnical and geoenvironmental engineering, Vol. 136 N° 8 (Août 2010)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 136 N° 8 (Août 2010) . - pp. 1086-1094
Titre : Mechanistic corrections for determining the resilient modulus of base course materials based on elastic wave measurements Type de document : texte imprimé Auteurs : C. C. Schuettpelz, Auteur ; D. Fratta, Auteur ; T. B. Edil, Auteur Année de publication : 2010 Article en page(s) : pp. 1086-1094 Note générale : Géotechnique Langues : Anglais (eng) Mots-clés : Resilient modulus Seismic modulus Base course Subbase course Large-grain materials Granular materials Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : The mechanical performance of pavement systems depends on the stiffness of subsurface soil and aggregate materials. The moduli of base course, subbase, and subgrade soils included in pavement systems need to be characterized for their use in the new empirical-mechanistic design procedure (NCHRP 1-37A). Typically, the resilient modulus test is used in the design of base and subbase layers under repetitive loads. Unfortunately, resilient modulus tests are expensive and cannot be applied to materials that contain particles larger than 25 mm (for 125-mm diameter specimens) without scalping the large grains. This paper examines a new methodology for estimating resilient modulus based on the propagation of elastic waves. The method is based on using a mechanistic approach that relates the P-wave velocity-based modulus to the resilient modulus through corrections for stress, void ratio, strain, and Poisson’s ratio effects. Results of this study indicate that resilient moduli are approximately 30% of Young’s moduli based on seismic measurements. The technique is then applied to specimens with large-grain particles. Results show that the methodology can be applied to large-grained materials and their resilient modulus can be estimated with reasonable accuracy based on seismic techniques. An approach is proposed to apply the technique to field determinations of modulus.
DEWEY : 624.1 ISSN : 1090-0241 En ligne : http://ascelibrary.org/gto/resource/1/jggefk/v136/i8/p1086_s1?isAuthorized=no [article] Mechanistic corrections for determining the resilient modulus of base course materials based on elastic wave measurements [texte imprimé] / C. C. Schuettpelz, Auteur ; D. Fratta, Auteur ; T. B. Edil, Auteur . - 2010 . - pp. 1086-1094.
Géotechnique
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 136 N° 8 (Août 2010) . - pp. 1086-1094
Mots-clés : Resilient modulus Seismic modulus Base course Subbase course Large-grain materials Granular materials Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : The mechanical performance of pavement systems depends on the stiffness of subsurface soil and aggregate materials. The moduli of base course, subbase, and subgrade soils included in pavement systems need to be characterized for their use in the new empirical-mechanistic design procedure (NCHRP 1-37A). Typically, the resilient modulus test is used in the design of base and subbase layers under repetitive loads. Unfortunately, resilient modulus tests are expensive and cannot be applied to materials that contain particles larger than 25 mm (for 125-mm diameter specimens) without scalping the large grains. This paper examines a new methodology for estimating resilient modulus based on the propagation of elastic waves. The method is based on using a mechanistic approach that relates the P-wave velocity-based modulus to the resilient modulus through corrections for stress, void ratio, strain, and Poisson’s ratio effects. Results of this study indicate that resilient moduli are approximately 30% of Young’s moduli based on seismic measurements. The technique is then applied to specimens with large-grain particles. Results show that the methodology can be applied to large-grained materials and their resilient modulus can be estimated with reasonable accuracy based on seismic techniques. An approach is proposed to apply the technique to field determinations of modulus.
DEWEY : 624.1 ISSN : 1090-0241 En ligne : http://ascelibrary.org/gto/resource/1/jggefk/v136/i8/p1086_s1?isAuthorized=no