[article]
Titre : |
Physics based control oriented model for HCCI combustion timing |
Type de document : |
texte imprimé |
Auteurs : |
Mahdi Shahbakhti, Auteur ; Charles Robert Koch, Auteur |
Année de publication : |
2010 |
Article en page(s) : |
12 p. |
Note générale : |
Systèmes dynamiques |
Langues : |
Anglais (eng) |
Mots-clés : |
Combustion Engines Fuel economy Shafts Thermodynamics |
Index. décimale : |
629.8 |
Résumé : |
Incorporating homogeneous charge compression ignition (HCCI) into combustion engines for better fuel economy and lower emission requires understanding the dynamics influencing the combustion timing in HCCI engines. A control oriented model to dynamically predict cycle-to-cycle combustion timing of a HCCI engine is developed. The model is designed to work with parameters that are easy to measure and to have low computation time with sufficient accuracy for control applications. The model is a full-cycle model and consists of a residual gas model, a modified knock integral model, fuel burn rate model, and thermodynamic models. In addition, semi-empirical correlations are used to predict the gas exchange process, generated work and completeness of combustion. The developed model incorporates the thermal coupling dynamics caused by the residual gases from one cycle to the next cycle. The model is parameterized by over 5700 simulations from a detailed thermokinetic model and experimental data obtained from a single-cylinder engine. Cross-validation of the model with both steady-state and transient HCCI experiments for four different primary reference fuel blends is detailed. With seven model inputs, the combustion timing of over 150 different HCCI points is predicted to within an average error of less than 1.5 deg of crank angle. A narrow window of combustion timing is found to provide stable and efficient HCCI operation. |
DEWEY : |
629.8 |
ISSN : |
0022-0434 |
En ligne : |
http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] |
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 2 (Mars/Avril 2010) . - 12 p.
[article] Physics based control oriented model for HCCI combustion timing [texte imprimé] / Mahdi Shahbakhti, Auteur ; Charles Robert Koch, Auteur . - 2010 . - 12 p. Systèmes dynamiques Langues : Anglais ( eng) in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 2 (Mars/Avril 2010) . - 12 p.
Mots-clés : |
Combustion Engines Fuel economy Shafts Thermodynamics |
Index. décimale : |
629.8 |
Résumé : |
Incorporating homogeneous charge compression ignition (HCCI) into combustion engines for better fuel economy and lower emission requires understanding the dynamics influencing the combustion timing in HCCI engines. A control oriented model to dynamically predict cycle-to-cycle combustion timing of a HCCI engine is developed. The model is designed to work with parameters that are easy to measure and to have low computation time with sufficient accuracy for control applications. The model is a full-cycle model and consists of a residual gas model, a modified knock integral model, fuel burn rate model, and thermodynamic models. In addition, semi-empirical correlations are used to predict the gas exchange process, generated work and completeness of combustion. The developed model incorporates the thermal coupling dynamics caused by the residual gases from one cycle to the next cycle. The model is parameterized by over 5700 simulations from a detailed thermokinetic model and experimental data obtained from a single-cylinder engine. Cross-validation of the model with both steady-state and transient HCCI experiments for four different primary reference fuel blends is detailed. With seven model inputs, the combustion timing of over 150 different HCCI points is predicted to within an average error of less than 1.5 deg of crank angle. A narrow window of combustion timing is found to provide stable and efficient HCCI operation. |
DEWEY : |
629.8 |
ISSN : |
0022-0434 |
En ligne : |
http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] |
|