Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jonathan Granstrom
Documents disponibles écrits par cet auteur
Affiner la rechercheKinematic analysis of a swash-plate controlled variable displacement axial-piston pump with a conical barrel assembly / Zhiru Shi in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 132 N° 1 (Janvier/Fevrier 2010)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 1 (Janvier/Fevrier 2010) . - 08 p.
Titre : Kinematic analysis of a swash-plate controlled variable displacement axial-piston pump with a conical barrel assembly Type de document : texte imprimé Auteurs : Zhiru Shi, Auteur ; Gordon Parker, Auteur ; Jonathan Granstrom, Auteur Année de publication : 2010 Article en page(s) : 08 p. Note générale : Systèmes dynamiques Langues : Anglais (eng) Mots-clés : Flow Kinematics Pistons Pumps Index. décimale : 629.8 Résumé : Variable displacement, swash-plate controlled, axial-piston pumps are widely used in applications that require high pressure and variable flow rates. The pump consists of a rotating barrel assembly that houses several pistons in a circular array. A swash-plate is used to control the displacement of the pistons to adjust the output flow of hydraulic fluid. As the barrel rotates, the pistons slide along the angled swash-plate and draw oil from the supply and then discharge oil into the high pressure circuit. This results in an almost constant output flow rate. This paper analyzes the kinematics of a pump based on its geometry dependent characteristics. The analysis assumes an idealized case in which there is no oil leakage and the fluid is considered to be incompressible. It is revealed through the analysis that the piston displacement and the pump output flow are slightly increased by using a conical barrel. Instantaneous and mean flow rate equations are used to describe the output flow characteristics and flow ripple effect. The output flow rate ripple profile is found to be a function of both swash-plate angle and the conical barrel angle. A term defined as the flow rate uniformity coefficient is used to better quantify the flow ripple phenomenon. A frequency analysis is performed on the output flow rate and an additional order is found to be present when using a conical barrel pump versus one with a cylindrical barrel when the pumps have an odd number of pistons. Conical barrel piston pumps are found to have a slight increase in piston displacement, velocity, and acceleration relative to the rotating barrel frame of reference over a pump with a cylindrical barrel. This translates into an increase in the output flow rate for a conical piston pump under the same operating conditions. The conical barrel is also found to have a reduction in the rotational inertia allowing for faster angular acceleration. The presence of an extra order from a frequency analysis for a conical pump with an odd number of pistons has the potential to cause unwanted noise or vibration to the structure or components attached to the pump. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...] [article] Kinematic analysis of a swash-plate controlled variable displacement axial-piston pump with a conical barrel assembly [texte imprimé] / Zhiru Shi, Auteur ; Gordon Parker, Auteur ; Jonathan Granstrom, Auteur . - 2010 . - 08 p.
Systèmes dynamiques
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 132 N° 1 (Janvier/Fevrier 2010) . - 08 p.
Mots-clés : Flow Kinematics Pistons Pumps Index. décimale : 629.8 Résumé : Variable displacement, swash-plate controlled, axial-piston pumps are widely used in applications that require high pressure and variable flow rates. The pump consists of a rotating barrel assembly that houses several pistons in a circular array. A swash-plate is used to control the displacement of the pistons to adjust the output flow of hydraulic fluid. As the barrel rotates, the pistons slide along the angled swash-plate and draw oil from the supply and then discharge oil into the high pressure circuit. This results in an almost constant output flow rate. This paper analyzes the kinematics of a pump based on its geometry dependent characteristics. The analysis assumes an idealized case in which there is no oil leakage and the fluid is considered to be incompressible. It is revealed through the analysis that the piston displacement and the pump output flow are slightly increased by using a conical barrel. Instantaneous and mean flow rate equations are used to describe the output flow characteristics and flow ripple effect. The output flow rate ripple profile is found to be a function of both swash-plate angle and the conical barrel angle. A term defined as the flow rate uniformity coefficient is used to better quantify the flow ripple phenomenon. A frequency analysis is performed on the output flow rate and an additional order is found to be present when using a conical barrel pump versus one with a cylindrical barrel when the pumps have an odd number of pistons. Conical barrel piston pumps are found to have a slight increase in piston displacement, velocity, and acceleration relative to the rotating barrel frame of reference over a pump with a cylindrical barrel. This translates into an increase in the output flow rate for a conical piston pump under the same operating conditions. The conical barrel is also found to have a reduction in the rotational inertia allowing for faster angular acceleration. The presence of an extra order from a frequency analysis for a conical pump with an odd number of pistons has the potential to cause unwanted noise or vibration to the structure or components attached to the pump. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA00013200 [...]