Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Nikolay Archak
Documents disponibles écrits par cet auteur
Affiner la rechercheDeriving the pricing power of product features by mining consumer reviews / Nikolay Archak in Management science, Vol. 57 N° 8 (Août 2011)
[article]
in Management science > Vol. 57 N° 8 (Août 2011) . - pp. 1485-1509
Titre : Deriving the pricing power of product features by mining consumer reviews Type de document : texte imprimé Auteurs : Nikolay Archak, Auteur ; Anindya Ghose, Auteur ; Panagiotis G. Ipeirotis, Auteur Année de publication : 2011 Article en page(s) : pp. 1485-1509 Note générale : Management Langues : Anglais (eng) Mots-clés : Bayesian learning Consumer reviews Discrete choice Electronic commerce Electronic markets Opinion mining Sentiment analysis User-generated content Text mining Econometrics Index. décimale : 658 Organisation des entreprises. Techniques du commerce Résumé : Increasingly, user-generated product reviews serve as a valuable source of information for customers making product choices online. The existing literature typically incorporates the impact of product reviews on sales based on numeric variables representing the valence and volume of reviews. In this paper, we posit that the information embedded in product reviews cannot be captured by a single scalar value. Rather, we argue that product reviews are multifaceted, and hence the textual content of product reviews is an important determinant of consumers' choices, over and above the valence and volume of reviews. To demonstrate this, we use text mining to incorporate review text in a consumer choice model by decomposing textual reviews into segments describing different product features. We estimate our model based on a unique data set from Amazon containing sales data and consumer review data for two different groups of products (digital cameras and camcorders) over a 15-month period. We alleviate the problems of data sparsity and of omitted variables by providing two experimental techniques: clustering rare textual opinions based on pointwise mutual information and using externally imposed review semantics. This paper demonstrates how textual data can be used to learn consumers' relative preferences for different product features and also how text can be used for predictive modeling of future changes in sales. DEWEY : 658 ISSN : 0025-1909 En ligne : http://mansci.journal.informs.org/content/57/8.toc [article] Deriving the pricing power of product features by mining consumer reviews [texte imprimé] / Nikolay Archak, Auteur ; Anindya Ghose, Auteur ; Panagiotis G. Ipeirotis, Auteur . - 2011 . - pp. 1485-1509.
Management
Langues : Anglais (eng)
in Management science > Vol. 57 N° 8 (Août 2011) . - pp. 1485-1509
Mots-clés : Bayesian learning Consumer reviews Discrete choice Electronic commerce Electronic markets Opinion mining Sentiment analysis User-generated content Text mining Econometrics Index. décimale : 658 Organisation des entreprises. Techniques du commerce Résumé : Increasingly, user-generated product reviews serve as a valuable source of information for customers making product choices online. The existing literature typically incorporates the impact of product reviews on sales based on numeric variables representing the valence and volume of reviews. In this paper, we posit that the information embedded in product reviews cannot be captured by a single scalar value. Rather, we argue that product reviews are multifaceted, and hence the textual content of product reviews is an important determinant of consumers' choices, over and above the valence and volume of reviews. To demonstrate this, we use text mining to incorporate review text in a consumer choice model by decomposing textual reviews into segments describing different product features. We estimate our model based on a unique data set from Amazon containing sales data and consumer review data for two different groups of products (digital cameras and camcorders) over a 15-month period. We alleviate the problems of data sparsity and of omitted variables by providing two experimental techniques: clustering rare textual opinions based on pointwise mutual information and using externally imposed review semantics. This paper demonstrates how textual data can be used to learn consumers' relative preferences for different product features and also how text can be used for predictive modeling of future changes in sales. DEWEY : 658 ISSN : 0025-1909 En ligne : http://mansci.journal.informs.org/content/57/8.toc