Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Reiner Buck
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalysis of solar-thermal power plants with thermal energy storage and solar-hybrid operation strategy / Stefano Giuliano in Transactions of the ASME. Journal of solar energy engineering, Vol. 133 N° 3 (N° Spécial) (Août 2011)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 07 p.
Titre : Analysis of solar-thermal power plants with thermal energy storage and solar-hybrid operation strategy Type de document : texte imprimé Auteurs : Stefano Giuliano, Auteur ; Reiner Buck, Auteur ; Santiago Eguiguren, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Solar energy Langues : Anglais (eng) Mots-clés : Combined cycle power stations Fossil fuels Hybrid power systems Power generation dispatch Solar power stations Steam turbines Index. décimale : 621.47 Résumé : Selected solar-hybrid power plants for operation in base-load as well as midload were analyzed regarding supply security (dispatchable power due to hybridization with fossil fuel) and low CO2 emissions (due to integration of thermal energy storage). The power plants were modeled with different sizes of solar fields and different storage capacities and analyzed on an annual basis. The results were compared to each other and to a conventional fossil-fired combined cycle in terms of technical, economical, and ecological figures. The results of this study show that in comparison to a conventional fossil-fired combined cycle, the potential to reduce the CO2 emissions is high for solar-thermal power plants operated in base-load, especially with large solar fields and high storage capacities. However, for dispatchable power generation and supply security it is obvious that in any case a certain amount of additional fossil fuel is required. No analyzed solar-hybrid power plant shows at the same time advantages in terms of low CO2 emissions and low levelized electricity cost (LEC). While power plants with solar-hybrid combined cycle (SHCC®, Particle-Tower) show interesting LEC, the power plants with steam turbine (Salt-Tower, Parabolic Trough, CO2-Tower) have low CO2 emissions. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...] [article] Analysis of solar-thermal power plants with thermal energy storage and solar-hybrid operation strategy [texte imprimé] / Stefano Giuliano, Auteur ; Reiner Buck, Auteur ; Santiago Eguiguren, Auteur . - 2012 . - 07 p.
Solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 07 p.
Mots-clés : Combined cycle power stations Fossil fuels Hybrid power systems Power generation dispatch Solar power stations Steam turbines Index. décimale : 621.47 Résumé : Selected solar-hybrid power plants for operation in base-load as well as midload were analyzed regarding supply security (dispatchable power due to hybridization with fossil fuel) and low CO2 emissions (due to integration of thermal energy storage). The power plants were modeled with different sizes of solar fields and different storage capacities and analyzed on an annual basis. The results were compared to each other and to a conventional fossil-fired combined cycle in terms of technical, economical, and ecological figures. The results of this study show that in comparison to a conventional fossil-fired combined cycle, the potential to reduce the CO2 emissions is high for solar-thermal power plants operated in base-load, especially with large solar fields and high storage capacities. However, for dispatchable power generation and supply security it is obvious that in any case a certain amount of additional fossil fuel is required. No analyzed solar-hybrid power plant shows at the same time advantages in terms of low CO2 emissions and low levelized electricity cost (LEC). While power plants with solar-hybrid combined cycle (SHCC®, Particle-Tower) show interesting LEC, the power plants with steam turbine (Salt-Tower, Parabolic Trough, CO2-Tower) have low CO2 emissions. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...] Assessment of solar power tower driven ultrasupercritical steam cycles applying tubular central receivers with varied heat transfer media / Csaba Singer in Transactions of the ASME. Journal of solar energy engineering, Vol. 132 N° 4 (Novembre 2010)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 4 (Novembre 2010) . - pp. [041010/1-12]
Titre : Assessment of solar power tower driven ultrasupercritical steam cycles applying tubular central receivers with varied heat transfer media Type de document : texte imprimé Auteurs : Csaba Singer, Auteur ; Reiner Buck, Auteur ; Robert Pitz-Paal, Auteur Année de publication : 2011 Article en page(s) : pp. [041010/1-12] Note générale : Energie Solaire Langues : Anglais (eng) Mots-clés : Cost reduction Solar power stations steam power stations Index. décimale : 621.47 Résumé : For clean and efficient electric power generation, the combination of solar power towers (SPTs) with ultrasupercritical steam cycle power plants could be the next development step. The methodology of the European concentrated solar thermal roadmap study was used to predict the annual performance and the cost reduction potential of this option applying tubular receivers with various appropriate high temperature heat transfer media (HTM). For the assessment, an analytical model of the heat transfer in a parametric 360 deg cylindrical and tubular central receiver was developed to examine the receiver's efficiency characteristics. The receiver's efficiency characteristics, which are based on different irradiation levels relative to the receiver's design point, are, then, used to interpolate the receiver's thermal efficiency in an hourly based annual calculation of one typical year that is defined by hourly based real measurements of the direct normal irradiance and the ambient temperature. Applying appropriate cost assumptions from literature, the levelized electricity costs (LEC) were estimated for each considered SPT concept and compared with the reference case, which is a scale-up of the state of the art molten salt concept. The power level of all compared concepts and the reference case is 50 MWel. The sensitivity of the specific cost assumptions for the LEC was evaluated for each concept variation. No detailed evaluation was done for the thermal storage but comparable costs were assumed for all cases. The results indicate a significant cost reduction potential of up to 15% LEC reduction in the liquid metal HTM processes. Due to annual performance based parametric studies of the number of receiver panels and storage capacity, the results also indicate the optimal values of these parameters concerning minimal LEC.
DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...] [article] Assessment of solar power tower driven ultrasupercritical steam cycles applying tubular central receivers with varied heat transfer media [texte imprimé] / Csaba Singer, Auteur ; Reiner Buck, Auteur ; Robert Pitz-Paal, Auteur . - 2011 . - pp. [041010/1-12].
Energie Solaire
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 4 (Novembre 2010) . - pp. [041010/1-12]
Mots-clés : Cost reduction Solar power stations steam power stations Index. décimale : 621.47 Résumé : For clean and efficient electric power generation, the combination of solar power towers (SPTs) with ultrasupercritical steam cycle power plants could be the next development step. The methodology of the European concentrated solar thermal roadmap study was used to predict the annual performance and the cost reduction potential of this option applying tubular receivers with various appropriate high temperature heat transfer media (HTM). For the assessment, an analytical model of the heat transfer in a parametric 360 deg cylindrical and tubular central receiver was developed to examine the receiver's efficiency characteristics. The receiver's efficiency characteristics, which are based on different irradiation levels relative to the receiver's design point, are, then, used to interpolate the receiver's thermal efficiency in an hourly based annual calculation of one typical year that is defined by hourly based real measurements of the direct normal irradiance and the ambient temperature. Applying appropriate cost assumptions from literature, the levelized electricity costs (LEC) were estimated for each considered SPT concept and compared with the reference case, which is a scale-up of the state of the art molten salt concept. The power level of all compared concepts and the reference case is 50 MWel. The sensitivity of the specific cost assumptions for the LEC was evaluated for each concept variation. No detailed evaluation was done for the thermal storage but comparable costs were assumed for all cases. The results indicate a significant cost reduction potential of up to 15% LEC reduction in the liquid metal HTM processes. Due to annual performance based parametric studies of the number of receiver panels and storage capacity, the results also indicate the optimal values of these parameters concerning minimal LEC.
DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...]