Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur J. V. Munoz
Documents disponibles écrits par cet auteur
Affiner la rechercheOnline monitoring system for stand-alone photovoltaic applications / M. Torres in Transactions of the ASME. Journal of solar energy engineering, Vol. 134 N° 3 (Août 2012)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 3 (Août 2012) . - 08 p.
Titre : Online monitoring system for stand-alone photovoltaic applications : analysis of system performance from monitored data Type de document : texte imprimé Auteurs : M. Torres, Auteur ; F. J. Muñoz, Auteur ; J. V. Munoz, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : solar energy Langues : Anglais (eng) Mots-clés : SAPV systems; performance analysis; monitoring; LABVIEW; internet Index. décimale : 621.47 Résumé : The Guidelines for the Assessment of Photovoltaic Plants provided by the Joint Research Centre (JRC) and the International Standard IEC 61724 recommend procedures for the analysis of monitored data to asses the overall performance of photovoltaic (PV) systems. However, the latter do not provide a well adapted method for the analysis of stand-alone photovoltaic systems (SAPV) with charge regulators without maximum power point tracker (MPPT). In this way, the IDEA Research Group has developed a new method that improves the analysis performance of these kinds of systems. Moreover, it has been validated an expression that compromises simplicity and accuracy when estimating the array potential in this kind of systems. SAPV system monitoring and performance analysis from monitored data are of great interest to engineers both for detecting a system malfunction and for optimizing the design of future SAPV system. In this way, this paper introduces an online monitoring system in real time for SAPV applications where the monitored data are processed in order to provide an analysis of system performance. The latter, together with the monitored data, are displayed on a graphical user interface using a virtual instrument (VI) developed in LABVIEW®. Furthermore, the collected and monitored data can be shown in a website where an external user can see the daily evolution of all monitored and derived parameters. At present, three different SAPV systems, installed in the Polytechnic School of University of Jaén, are being monitorized and the collected data are being published online in real time. Moreover, a performance analysis of these stand-alone photovoltaic systems considering both IEC 61724 and the IDEA Method is also offered. These three systems use the charge regulators more widespread in the market. Systems #1 and #2 use pulse width modulation (PWM) charge regulators, (a series and a shunt regulator, respectively), meanwhile System #3 has a charge regulator with MPPT. This website provides a tool that can be used not only for educational purposes in order to illustrate the operation of this kind of systems but it can also show the scientific and engineering community the main features of the system performance analysis methods mentioned above. Furthermore, it allows an external user to download the monitored and analysis data to make its own offline analysis. These files comply with the format proposed in the standard IEC 61724. The SAPV system monitoring website is now available for public viewing on the University of Jaén. (http://voltio.ujaen.es/sfa/index.html). DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000003 [...] [article] Online monitoring system for stand-alone photovoltaic applications : analysis of system performance from monitored data [texte imprimé] / M. Torres, Auteur ; F. J. Muñoz, Auteur ; J. V. Munoz, Auteur . - 2012 . - 08 p.
solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 3 (Août 2012) . - 08 p.
Mots-clés : SAPV systems; performance analysis; monitoring; LABVIEW; internet Index. décimale : 621.47 Résumé : The Guidelines for the Assessment of Photovoltaic Plants provided by the Joint Research Centre (JRC) and the International Standard IEC 61724 recommend procedures for the analysis of monitored data to asses the overall performance of photovoltaic (PV) systems. However, the latter do not provide a well adapted method for the analysis of stand-alone photovoltaic systems (SAPV) with charge regulators without maximum power point tracker (MPPT). In this way, the IDEA Research Group has developed a new method that improves the analysis performance of these kinds of systems. Moreover, it has been validated an expression that compromises simplicity and accuracy when estimating the array potential in this kind of systems. SAPV system monitoring and performance analysis from monitored data are of great interest to engineers both for detecting a system malfunction and for optimizing the design of future SAPV system. In this way, this paper introduces an online monitoring system in real time for SAPV applications where the monitored data are processed in order to provide an analysis of system performance. The latter, together with the monitored data, are displayed on a graphical user interface using a virtual instrument (VI) developed in LABVIEW®. Furthermore, the collected and monitored data can be shown in a website where an external user can see the daily evolution of all monitored and derived parameters. At present, three different SAPV systems, installed in the Polytechnic School of University of Jaén, are being monitorized and the collected data are being published online in real time. Moreover, a performance analysis of these stand-alone photovoltaic systems considering both IEC 61724 and the IDEA Method is also offered. These three systems use the charge regulators more widespread in the market. Systems #1 and #2 use pulse width modulation (PWM) charge regulators, (a series and a shunt regulator, respectively), meanwhile System #3 has a charge regulator with MPPT. This website provides a tool that can be used not only for educational purposes in order to illustrate the operation of this kind of systems but it can also show the scientific and engineering community the main features of the system performance analysis methods mentioned above. Furthermore, it allows an external user to download the monitored and analysis data to make its own offline analysis. These files comply with the format proposed in the standard IEC 61724. The SAPV system monitoring website is now available for public viewing on the University of Jaén. (http://voltio.ujaen.es/sfa/index.html). DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000003 [...] Spectral reflectance patterns of photovoltaic modules and their thermal effects / J. P. Silva in Transactions of the ASME. Journal of solar energy engineering, Vol. 132 N° 4 (Novembre 2010)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 4 (Novembre 2010) . - pp. [041016/1-13]
Titre : Spectral reflectance patterns of photovoltaic modules and their thermal effects Type de document : texte imprimé Auteurs : J. P. Silva, Auteur ; G. Nofuentes, Auteur ; J. V. Munoz, Auteur Année de publication : 2011 Article en page(s) : pp. [041016/1-13] Note générale : Energie Solaire Langues : Anglais (eng) Mots-clés : PV module temperature Thermal modeling Spectral reflectance Thermal performance Index. décimale : 621.47 Résumé : Determination of the working temperature of photovoltaic (PV) modules is an essential task in research and engineering projects. It acquires more relevance in the current environment, characterized by increasing figures of installed PV power, module efficiency, solar applications, and operational configurations. However, most of the current procedures for temperature determination of PV modules are simply based on empirical correlations, carried out at conditions defined by some specific standards, with the corresponding lack of accuracy when modules work under real conditions. Thus, the present work looks into a formal procedure for temperature determination by conducting a power balance between the dynamic incoming and outgoing power fluxes. Some additional parameters are included when compared with classic expressions. In particular, the spectral reflectance of the tandem glass-semiconductor is measured to determine the reflected fraction of solar irradiance. The relationship between reflectance and equilibrium temperature is determined for a representative group of PV modules, and the influence that the working point exerts on the module temperature has also been taken into account. Finally, the influence of spectral distribution on module temperature has been quantified by simulations carried out by using a spectral model. In this way, determination of absolute temperature is achieved within a ±2°C range, regardless of module characteristics and climatic or operational conditions. In addition, temperature differences between PV modules that work under the same external conditions can be predicted within ±0.5°C. To summarize, a thermal model suitable for different PV modules and working configurations is presented. Some new parameters are introduced in the calculus process, and the influence of the most relevant ones has been quantified. In this way, the present work is aimed at making a contribution to the study of PV module temperature.
DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...] [article] Spectral reflectance patterns of photovoltaic modules and their thermal effects [texte imprimé] / J. P. Silva, Auteur ; G. Nofuentes, Auteur ; J. V. Munoz, Auteur . - 2011 . - pp. [041016/1-13].
Energie Solaire
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 4 (Novembre 2010) . - pp. [041016/1-13]
Mots-clés : PV module temperature Thermal modeling Spectral reflectance Thermal performance Index. décimale : 621.47 Résumé : Determination of the working temperature of photovoltaic (PV) modules is an essential task in research and engineering projects. It acquires more relevance in the current environment, characterized by increasing figures of installed PV power, module efficiency, solar applications, and operational configurations. However, most of the current procedures for temperature determination of PV modules are simply based on empirical correlations, carried out at conditions defined by some specific standards, with the corresponding lack of accuracy when modules work under real conditions. Thus, the present work looks into a formal procedure for temperature determination by conducting a power balance between the dynamic incoming and outgoing power fluxes. Some additional parameters are included when compared with classic expressions. In particular, the spectral reflectance of the tandem glass-semiconductor is measured to determine the reflected fraction of solar irradiance. The relationship between reflectance and equilibrium temperature is determined for a representative group of PV modules, and the influence that the working point exerts on the module temperature has also been taken into account. Finally, the influence of spectral distribution on module temperature has been quantified by simulations carried out by using a spectral model. In this way, determination of absolute temperature is achieved within a ±2°C range, regardless of module characteristics and climatic or operational conditions. In addition, temperature differences between PV modules that work under the same external conditions can be predicted within ±0.5°C. To summarize, a thermal model suitable for different PV modules and working configurations is presented. Some new parameters are introduced in the calculus process, and the influence of the most relevant ones has been quantified. In this way, the present work is aimed at making a contribution to the study of PV module temperature.
DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...]