Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur James Luedtke
Documents disponibles écrits par cet auteur
Affiner la rechercheStaffing call centers with uncertain demand forecasts / Gurvich Itai in Management science, Vol. 56 N° 7 (Juillet 2010)
[article]
in Management science > Vol. 56 N° 7 (Juillet 2010) . - pp. 1093-1115
Titre : Staffing call centers with uncertain demand forecasts : A chance-constrained optimization approach Type de document : texte imprimé Auteurs : Gurvich Itai, Auteur ; James Luedtke, Auteur ; Tolga Tezcan, Auteur Année de publication : 2010 Article en page(s) : pp. 1093-1115 Note générale : Management Langues : Anglais (eng) Mots-clés : Call centers Chance-constrained optimization Queueing Index. décimale : 658 Organisation des entreprises. Techniques du commerce Résumé : We consider the problem of staffing call centers with multiple customer classes and agent types operating under quality-of-service (QoS) constraints and demand rate uncertainty. We introduce a formulation of the staffing problem that requires that the QoS constraints are met with high probability with respect to the uncertainty in the demand rate. We contrast this chance-constrained formulation with the average-performance constraints that have been used so far in the literature. We then propose a two-step solution for the staffing problem under chance constraints. In the first step, we introduce a random static planning problem (RSPP) and discuss how it can be solved using two different methods. The RSPP provides us with a first-order (or fluid) approximation for the true optimal staffing levels and a staffing frontier. In the second step, we solve a finite number of staffing problems with known arrival rates—the arrival rates on the optimal staffing frontier. Hence, our formulation and solution approach has the important property that it translates the problem with uncertain demand rates to one with known arrival rates. The output of our procedure is a solution that is feasible with respect to the chance constraint and nearly optimal for large call centers. DEWEY : 658 ISSN : 0025-1909 En ligne : http://mansci.journal.informs.org/content/56/7.toc [article] Staffing call centers with uncertain demand forecasts : A chance-constrained optimization approach [texte imprimé] / Gurvich Itai, Auteur ; James Luedtke, Auteur ; Tolga Tezcan, Auteur . - 2010 . - pp. 1093-1115.
Management
Langues : Anglais (eng)
in Management science > Vol. 56 N° 7 (Juillet 2010) . - pp. 1093-1115
Mots-clés : Call centers Chance-constrained optimization Queueing Index. décimale : 658 Organisation des entreprises. Techniques du commerce Résumé : We consider the problem of staffing call centers with multiple customer classes and agent types operating under quality-of-service (QoS) constraints and demand rate uncertainty. We introduce a formulation of the staffing problem that requires that the QoS constraints are met with high probability with respect to the uncertainty in the demand rate. We contrast this chance-constrained formulation with the average-performance constraints that have been used so far in the literature. We then propose a two-step solution for the staffing problem under chance constraints. In the first step, we introduce a random static planning problem (RSPP) and discuss how it can be solved using two different methods. The RSPP provides us with a first-order (or fluid) approximation for the true optimal staffing levels and a staffing frontier. In the second step, we solve a finite number of staffing problems with known arrival rates—the arrival rates on the optimal staffing frontier. Hence, our formulation and solution approach has the important property that it translates the problem with uncertain demand rates to one with known arrival rates. The output of our procedure is a solution that is feasible with respect to the chance constraint and nearly optimal for large call centers. DEWEY : 658 ISSN : 0025-1909 En ligne : http://mansci.journal.informs.org/content/56/7.toc