Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Maurizio Barbato
Documents disponibles écrits par cet auteur
Affiner la rechercheAn air-based cavity-receiver for solar trough concentrators / Bartelt, Roman in Transactions of the ASME. Journal of solar energy engineering, Vol. 132 N° 3 (Août 2010)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 3 (Août 2010) . - pp. [031017/1-7]
Titre : An air-based cavity-receiver for solar trough concentrators Type de document : texte imprimé Auteurs : Bartelt, Roman, Auteur ; Maurizio Barbato, Auteur ; Andrea Pedretti, Auteur Année de publication : 2011 Article en page(s) : pp. [031017/1-7] Note générale : Energie Solaire Langues : Anglais (eng) Mots-clés : Cavity resonators Convection Heat conduction Heat transfer Monte Carlo methods Solar absorber-convertors Solar radiation Index. décimale : 621.47 Résumé : A cylindrical cavity-receiver containing a tubular absorber that uses air as the heat transfer fluid is proposed for a novel solar trough concentrator design. A numerical heat transfer model is developed to determine the receiver's absorption efficiency and pumping power requirement. The 2D steady-state energy conservation equation coupling radiation, convection, and conduction heat transfer is formulated and solved numerically by finite volume techniques. The Monte Carlo ray-tracing and radiosity methods are applied to establish the solar radiation distribution and radiative exchange within the receiver. Simulations were conducted for a 50 m-long and 9.5 m-wide collector section with 120°C air inlet temperature, and air mass flows in the range 0.1–1.2 kg/s. Outlet air temperatures ranged from 260°C to 601°C, and corresponding absorption efficiencies varied between 60% and 18%. Main heat losses integrated over the receiver length were due to reflection and spillage at the receiver's windowed aperture, amounting to 13% and 9% of the solar power input, respectively. The pressure drop along the 50 m module was in the range 0.23–11.84 mbars, resulting in isentropic pumping power requirements of 6.45×10−4−0.395% of the solar power input.
DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...] [article] An air-based cavity-receiver for solar trough concentrators [texte imprimé] / Bartelt, Roman, Auteur ; Maurizio Barbato, Auteur ; Andrea Pedretti, Auteur . - 2011 . - pp. [031017/1-7].
Energie Solaire
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 3 (Août 2010) . - pp. [031017/1-7]
Mots-clés : Cavity resonators Convection Heat conduction Heat transfer Monte Carlo methods Solar absorber-convertors Solar radiation Index. décimale : 621.47 Résumé : A cylindrical cavity-receiver containing a tubular absorber that uses air as the heat transfer fluid is proposed for a novel solar trough concentrator design. A numerical heat transfer model is developed to determine the receiver's absorption efficiency and pumping power requirement. The 2D steady-state energy conservation equation coupling radiation, convection, and conduction heat transfer is formulated and solved numerically by finite volume techniques. The Monte Carlo ray-tracing and radiosity methods are applied to establish the solar radiation distribution and radiative exchange within the receiver. Simulations were conducted for a 50 m-long and 9.5 m-wide collector section with 120°C air inlet temperature, and air mass flows in the range 0.1–1.2 kg/s. Outlet air temperatures ranged from 260°C to 601°C, and corresponding absorption efficiencies varied between 60% and 18%. Main heat losses integrated over the receiver length were due to reflection and spillage at the receiver's windowed aperture, amounting to 13% and 9% of the solar power input, respectively. The pressure drop along the 50 m module was in the range 0.23–11.84 mbars, resulting in isentropic pumping power requirements of 6.45×10−4−0.395% of the solar power input.
DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...]