Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Rainer Tamme
Documents disponibles écrits par cet auteur
Affiner la rechercheHigh temperature thermochemical heat storage for concentrated solar power using gas–solid reactions / Franziska Schaube in Transactions of the ASME. Journal of solar energy engineering, Vol. 133 N° 3 (N° Spécial) (Août 2011)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 07 p.
Titre : High temperature thermochemical heat storage for concentrated solar power using gas–solid reactions Type de document : texte imprimé Auteurs : Franziska Schaube, Auteur ; Antje Wörner, Auteur ; Rainer Tamme, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Solar energy Langues : Anglais (eng) Mots-clés : Chemical energy conversion Finite element analysis Heat transfer Reaction kinetics Solar power stations Thermal conductivity Index. décimale : 621.47 Résumé : High temperature thermal storage technologies that can be easily integrated into future concentrated solar power plants are a key factor for increasing the market potential of solar power production. Storing thermal energy by reversible gas–solid reactions has the potential of achieving high storage densities while being adjustable to various plant configurations. In this paper the Ca(OH)2/CaO reaction system is investigated theoretically. It can achieve storage densities above 300 kWh/m3 while operating in a temperature range between 400 and 600°C. Reactor concepts with indirect and direct heat transfer are being evaluated. The low thermal conductivity of the fixed bed of solid reactants turned out to considerably limit the performance of a storage tank with indirect heat input through the reactor walls. A one-dimensional model for the storage reactor is established and solved with the Finite Element Method. The reactor concept with direct heat transfer by flowing the gaseous reactant plus additional inert gas through the solid reactants did not show any limitation due to heat transfer. If reaction kinetics are fast enough, the reactor performance in case of the Ca(OH)2/CaO reaction system is limited by the thermal capacity of the gaseous stream to take-up heat of reaction. However, to limit pressure drop and the according losses for compression of the gas stream, the size of the storage system is restricted in a fixed bed configuration. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...] [article] High temperature thermochemical heat storage for concentrated solar power using gas–solid reactions [texte imprimé] / Franziska Schaube, Auteur ; Antje Wörner, Auteur ; Rainer Tamme, Auteur . - 2012 . - 07 p.
Solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 133 N° 3 (N° Spécial) (Août 2011) . - 07 p.
Mots-clés : Chemical energy conversion Finite element analysis Heat transfer Reaction kinetics Solar power stations Thermal conductivity Index. décimale : 621.47 Résumé : High temperature thermal storage technologies that can be easily integrated into future concentrated solar power plants are a key factor for increasing the market potential of solar power production. Storing thermal energy by reversible gas–solid reactions has the potential of achieving high storage densities while being adjustable to various plant configurations. In this paper the Ca(OH)2/CaO reaction system is investigated theoretically. It can achieve storage densities above 300 kWh/m3 while operating in a temperature range between 400 and 600°C. Reactor concepts with indirect and direct heat transfer are being evaluated. The low thermal conductivity of the fixed bed of solid reactants turned out to considerably limit the performance of a storage tank with indirect heat input through the reactor walls. A one-dimensional model for the storage reactor is established and solved with the Finite Element Method. The reactor concept with direct heat transfer by flowing the gaseous reactant plus additional inert gas through the solid reactants did not show any limitation due to heat transfer. If reaction kinetics are fast enough, the reactor performance in case of the Ca(OH)2/CaO reaction system is limited by the thermal capacity of the gaseous stream to take-up heat of reaction. However, to limit pressure drop and the according losses for compression of the gas stream, the size of the storage system is restricted in a fixed bed configuration. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000133000003 [...] Latent heat storage systems for solar thermal power plants and process heat applications / Wolf-Dieter Steinmann in Transactions of the ASME. Journal of solar energy engineering, Vol. 132 N° 2 (Mai 2010)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 2 (Mai 2010) . - pp. [021003/1-5]
Titre : Latent heat storage systems for solar thermal power plants and process heat applications Type de document : texte imprimé Auteurs : Wolf-Dieter Steinmann, Auteur ; Doerte Laing, Auteur ; Rainer Tamme, Auteur Année de publication : 2011 Article en page(s) : pp. [021003/1-5] Note générale : Energie Solaire Langues : Anglais (eng) Mots-clés : PCM Latent heat storage Energy storage Solar thermal power plants Solar process heat Index. décimale : 621.47 Résumé : Solar thermal systems using absorber evaporating steam directly require isothermal energy storage. The application of latent heat storage systems is an option to fulfill this demand. This concept has been demonstrated mainly for low temperature heating and refrigeration applications, the experience for the power level and temperature range characteristic of solar process heat and solar thermal power plants is limited. Cost effective implementation of the latent heat storage concept demands low cost phase change materials (PCMs). These PCMs usually show low thermal conductivity limiting the power density during the charging/discharging process. This paper describes various approaches, which have been investigated to overcome these limitations. Based on fundamental PCM-research and laboratory-scale experiments, the sandwich concept has been identified to show the highest potential. The sandwich concept has been demonstrated successfully for three different storage units ranging from 2 kW to 100 kW at melting temperatures of 145°C and 225°C.
DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...] [article] Latent heat storage systems for solar thermal power plants and process heat applications [texte imprimé] / Wolf-Dieter Steinmann, Auteur ; Doerte Laing, Auteur ; Rainer Tamme, Auteur . - 2011 . - pp. [021003/1-5].
Energie Solaire
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 2 (Mai 2010) . - pp. [021003/1-5]
Mots-clés : PCM Latent heat storage Energy storage Solar thermal power plants Solar process heat Index. décimale : 621.47 Résumé : Solar thermal systems using absorber evaporating steam directly require isothermal energy storage. The application of latent heat storage systems is an option to fulfill this demand. This concept has been demonstrated mainly for low temperature heating and refrigeration applications, the experience for the power level and temperature range characteristic of solar process heat and solar thermal power plants is limited. Cost effective implementation of the latent heat storage concept demands low cost phase change materials (PCMs). These PCMs usually show low thermal conductivity limiting the power density during the charging/discharging process. This paper describes various approaches, which have been investigated to overcome these limitations. Based on fundamental PCM-research and laboratory-scale experiments, the sandwich concept has been identified to show the highest potential. The sandwich concept has been demonstrated successfully for three different storage units ranging from 2 kW to 100 kW at melting temperatures of 145°C and 225°C.
DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...]