Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur R. Bader
Documents disponibles écrits par cet auteur
Affiner la rechercheExperimental and numerical heat transfer analysis of an air-based cavity-receiver for solar trough concentrators / R. Bader in Transactions of the ASME. Journal of solar energy engineering, Vol. 134 N° 2 (Mai 2012)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 2 (Mai 2012) . - 08 p.
Titre : Experimental and numerical heat transfer analysis of an air-based cavity-receiver for solar trough concentrators Type de document : texte imprimé Auteurs : R. Bader, Auteur ; A. Pedretti, Auteur ; A. Steinfeld, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : solar energy Langues : Anglais (eng) Mots-clés : heat transfer; parabolic trough; simulation; solar receiver; testing; cavity; air Index. décimale : 621.47 Résumé : We report on the field testing of a 42 m-long full-scale solar receiver prototype installed on a 9 m-aperture solar trough concentrator. The solar receiver consists of a cylindrical cavity containing a tubular absorber with air as the heat transfer fluid (HTF). Experimental results are used to validate a heat transfer model based on Monte Carlo ray-tracing and finite-volume techniques. Performance predictions obtained with the validated model yield the following results for the receiver. At summer solstice solar noon, with HTF inlet temperature of 120 °C and HTF outlet temperature in the range 250–450 °C, the receiver efficiency ranges from 45% to 29% for a solar power input of 280 kW. One third of the solar radiation incident on the receiver is lost by spillage at the aperture and reflection inside the cavity. Other heat losses are due to natural convection (9.9–9.7% of solar power input) and re-radiation (6.1–17.6%) through the cavity aperture and by natural convection from the cavity insulation (5.6–9.1%). The energy penalty associated with the HTF pumping work represents 0.6–24.4% of the power generated. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000002 [...] [article] Experimental and numerical heat transfer analysis of an air-based cavity-receiver for solar trough concentrators [texte imprimé] / R. Bader, Auteur ; A. Pedretti, Auteur ; A. Steinfeld, Auteur . - 2012 . - 08 p.
solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 2 (Mai 2012) . - 08 p.
Mots-clés : heat transfer; parabolic trough; simulation; solar receiver; testing; cavity; air Index. décimale : 621.47 Résumé : We report on the field testing of a 42 m-long full-scale solar receiver prototype installed on a 9 m-aperture solar trough concentrator. The solar receiver consists of a cylindrical cavity containing a tubular absorber with air as the heat transfer fluid (HTF). Experimental results are used to validate a heat transfer model based on Monte Carlo ray-tracing and finite-volume techniques. Performance predictions obtained with the validated model yield the following results for the receiver. At summer solstice solar noon, with HTF inlet temperature of 120 °C and HTF outlet temperature in the range 250–450 °C, the receiver efficiency ranges from 45% to 29% for a solar power input of 280 kW. One third of the solar radiation incident on the receiver is lost by spillage at the aperture and reflection inside the cavity. Other heat losses are due to natural convection (9.9–9.7% of solar power input) and re-radiation (6.1–17.6%) through the cavity aperture and by natural convection from the cavity insulation (5.6–9.1%). The energy penalty associated with the HTF pumping work represents 0.6–24.4% of the power generated. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000002 [...] A Solar trough concentrator for pill-box flux distribution over a CPV panel / R. Bader in Transactions of the ASME. Journal of solar energy engineering, Vol. 132 N° 1 (Janvier 2010)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 1 (Janvier 2010) . - pp. [014501/1-4]
Titre : A Solar trough concentrator for pill-box flux distribution over a CPV panel Type de document : texte imprimé Auteurs : R. Bader, Auteur ; A. Steinfeld, Auteur Année de publication : 2010 Article en page(s) : pp. [014501/1-4] Note générale : Energie Solaire Langues : Anglais (eng) Mots-clés : Focal planes Mirrors Monte Carlo methods Ray tracing Solar absorber-convertors Index. décimale : 621.47 Résumé : An integral methodology is formulated to analytically derive the exact profile of a solar trough concentrator that delivers a uniform radiative flux distribution over a flat rectangular target area at the focal plane. The Monte Carlo ray-tracing technique is applied to verify the analytical solution and investigate the effect of sun shape and mirror surface imperfections on the radiation uniformity and spillage. This design is pertinent to concentrating photovoltaics at moderate mean solar flux concentration ratios of up to 50 suns.
DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...] [article] A Solar trough concentrator for pill-box flux distribution over a CPV panel [texte imprimé] / R. Bader, Auteur ; A. Steinfeld, Auteur . - 2010 . - pp. [014501/1-4].
Energie Solaire
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 132 N° 1 (Janvier 2010) . - pp. [014501/1-4]
Mots-clés : Focal planes Mirrors Monte Carlo methods Ray tracing Solar absorber-convertors Index. décimale : 621.47 Résumé : An integral methodology is formulated to analytically derive the exact profile of a solar trough concentrator that delivers a uniform radiative flux distribution over a flat rectangular target area at the focal plane. The Monte Carlo ray-tracing technique is applied to verify the analytical solution and investigate the effect of sun shape and mirror surface imperfections on the radiation uniformity and spillage. This design is pertinent to concentrating photovoltaics at moderate mean solar flux concentration ratios of up to 50 suns.
DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO00013200 [...]