Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Bruce A. Pint
Documents disponibles écrits par cet auteur
Affiner la rechercheEvaluation of alumina-forming austenitic foil for advanced recuperators / Bruce A. Pint in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 10 (Octobre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 10 (Octobre 2011) . - 06 p.
Titre : Evaluation of alumina-forming austenitic foil for advanced recuperators Type de document : texte imprimé Auteurs : Bruce A. Pint, Auteur ; Michael P. Brady, Auteur ; Yukinori Yamamoto, Auteur Année de publication : 2011 Article en page(s) : 06 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Alumina Austenitic stainless steel Cogeneration Corrosion resistance Creep Films Forming processes Gas turbines Oxidation Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A corrosion- and creep-resistant austenitic stainless steel has been developed for advanced recuperator applications. By optimizing the Al and Cr contents, the alloy is fully austenitic for creep strength while allowing the formation of a chemically stable external alumina scale at temperatures up to 900°C. An alumina scale eliminates long-term problems with the formation of volatile Cr oxy-hydroxides in the presence of water vapor in exhaust gas. As a first step in producing foil for primary surface recuperators, three commercially cast heats have been rolled to ~100 µm thick foil in the laboratory to evaluate performance in creep and oxidation testing. Results from initial creep testing are presented at 675°C and 750°C, showing excellent creep strength compared with other candidate foil materials. Laboratory exposures in humid air at 650–800°C have shown acceptable oxidation resistance. A similar oxidation behavior was observed for sheet specimens of these alloys exposed in a modified 65 kW microturbine for 2871 h. One composition that showed superior creep and oxidation resistance has been selected for the preparation of a commercial batch of foil. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013300 [...] [article] Evaluation of alumina-forming austenitic foil for advanced recuperators [texte imprimé] / Bruce A. Pint, Auteur ; Michael P. Brady, Auteur ; Yukinori Yamamoto, Auteur . - 2011 . - 06 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 10 (Octobre 2011) . - 06 p.
Mots-clés : Alumina Austenitic stainless steel Cogeneration Corrosion resistance Creep Films Forming processes Gas turbines Oxidation Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : A corrosion- and creep-resistant austenitic stainless steel has been developed for advanced recuperator applications. By optimizing the Al and Cr contents, the alloy is fully austenitic for creep strength while allowing the formation of a chemically stable external alumina scale at temperatures up to 900°C. An alumina scale eliminates long-term problems with the formation of volatile Cr oxy-hydroxides in the presence of water vapor in exhaust gas. As a first step in producing foil for primary surface recuperators, three commercially cast heats have been rolled to ~100 µm thick foil in the laboratory to evaluate performance in creep and oxidation testing. Results from initial creep testing are presented at 675°C and 750°C, showing excellent creep strength compared with other candidate foil materials. Laboratory exposures in humid air at 650–800°C have shown acceptable oxidation resistance. A similar oxidation behavior was observed for sheet specimens of these alloys exposed in a modified 65 kW microturbine for 2871 h. One composition that showed superior creep and oxidation resistance has been selected for the preparation of a commercial batch of foil. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ00013300 [...] High-temperature performance of cast CF8C-plus austenitic stainless steel / Philip J. Maziasz in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 133 N° 9 (Septembre 2011)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 05 p.
Titre : High-temperature performance of cast CF8C-plus austenitic stainless steel Type de document : texte imprimé Auteurs : Philip J. Maziasz, Auteur ; Bruce A. Pint, Auteur Année de publication : 2012 Article en page(s) : 05 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Austenitic stainless steel Casting Creep Fracture Gas turbines High-temperature effects Oxidation Thermal stress cracking Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600–900°C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor. DEWEY : 620.1 ISSN : 0742-4795 En ligne : High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel [article] High-temperature performance of cast CF8C-plus austenitic stainless steel [texte imprimé] / Philip J. Maziasz, Auteur ; Bruce A. Pint, Auteur . - 2012 . - 05 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 133 N° 9 (Septembre 2011) . - 05 p.
Mots-clés : Austenitic stainless steel Casting Creep Fracture Gas turbines High-temperature effects Oxidation Thermal stress cracking Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600–900°C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor. DEWEY : 620.1 ISSN : 0742-4795 En ligne : High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel