Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur K.P. Sinhamahapatra
Documents disponibles écrits par cet auteur
Affiner la rechercheComparison of different turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube / T. Dutta in International journal of refrigeration, Vol. 33 N° 4 (Juin 2010)
[article]
in International journal of refrigeration > Vol. 33 N° 4 (Juin 2010) . - pp. 783-792
Titre : Comparison of different turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube Titre original : Comparaison de plusieurs modèles de turbulence dans la prévision de la séparation de température à l’intérieur d’un tube à vortex Ranque–Hilsch Type de document : texte imprimé Auteurs : T. Dutta, Auteur ; K.P. Sinhamahapatra, Auteur ; S. S. Bandyopdhyay, Auteur Année de publication : 2010 Article en page(s) : pp. 783-792 Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Ranque–Hilsch vortex tube CFD modelling Turbulence model Temperature separation Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : An axisymmetric computational fluid dynamics (CFD) model is used to compare the influence of different Reynolds Averaged Navier–Stokes (RANS) based turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube. The standard κ–ɛ, RNG κ–ɛ, standard κ–ω and SST κ–ω turbulence models are used in this study. The performance curves (hot and cold outlet temperatures versus hot outlet mass fraction) obtained by using these turbulence models are compared with the experimental results. The objective is to select an appropriate turbulence model for the simulation of the flow phenomena in a vortex tube with optimum computational expense. The performance analysis shows that among all the turbulence models investigated in this study, temperature separation predicted by the standard κ–ɛ turbulence model is closer to the experimental results. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700709002916 [article] Comparison of different turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube = Comparaison de plusieurs modèles de turbulence dans la prévision de la séparation de température à l’intérieur d’un tube à vortex Ranque–Hilsch [texte imprimé] / T. Dutta, Auteur ; K.P. Sinhamahapatra, Auteur ; S. S. Bandyopdhyay, Auteur . - 2010 . - pp. 783-792.
Génie Mécanique
Langues : Anglais (eng)
in International journal of refrigeration > Vol. 33 N° 4 (Juin 2010) . - pp. 783-792
Mots-clés : Ranque–Hilsch vortex tube CFD modelling Turbulence model Temperature separation Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : An axisymmetric computational fluid dynamics (CFD) model is used to compare the influence of different Reynolds Averaged Navier–Stokes (RANS) based turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube. The standard κ–ɛ, RNG κ–ɛ, standard κ–ω and SST κ–ω turbulence models are used in this study. The performance curves (hot and cold outlet temperatures versus hot outlet mass fraction) obtained by using these turbulence models are compared with the experimental results. The objective is to select an appropriate turbulence model for the simulation of the flow phenomena in a vortex tube with optimum computational expense. The performance analysis shows that among all the turbulence models investigated in this study, temperature separation predicted by the standard κ–ɛ turbulence model is closer to the experimental results. DEWEY : 621.5 ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700709002916 High-resolution numerical simulation of low Reynolds number incompressible flow about two cylinders in tandem / Sintu Singha in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 1 (Janvier 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 1 (Janvier 2010) . - 10 p.
Titre : High-resolution numerical simulation of low Reynolds number incompressible flow about two cylinders in tandem Type de document : texte imprimé Auteurs : Sintu Singha, Auteur ; K.P. Sinhamahapatra, Auteur Année de publication : 2010 Article en page(s) : 10 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : Reynolds number; cylinder Résumé : Low Reynolds number steady and unsteady incompressible flows over two circular cylinders in tandem are numerically simulated for a range of Reynolds numbers with varying gap size. The governing equations are solved on an unstructured collocated mesh using a second-order implicit finite volume method. The effects of the gap and Reynolds number on the vortex structure of the wake and on the fluid dynamic forces acting on the cylinders are reported and discussed. Both the parameters have significant influence on the flow field. An attempt is made to unify their influence on some global parameters. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] High-resolution numerical simulation of low Reynolds number incompressible flow about two cylinders in tandem [texte imprimé] / Sintu Singha, Auteur ; K.P. Sinhamahapatra, Auteur . - 2010 . - 10 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 1 (Janvier 2010) . - 10 p.
Mots-clés : Reynolds number; cylinder Résumé : Low Reynolds number steady and unsteady incompressible flows over two circular cylinders in tandem are numerically simulated for a range of Reynolds numbers with varying gap size. The governing equations are solved on an unstructured collocated mesh using a second-order implicit finite volume method. The effects of the gap and Reynolds number on the vortex structure of the wake and on the fluid dynamic forces acting on the cylinders are reported and discussed. Both the parameters have significant influence on the flow field. An attempt is made to unify their influence on some global parameters. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] Numerical investigation of gas species and energy separation in the Ranque–Hilsch vortex tube using real gas model / T. Dutta in International journal of refrigeration, Vol. 34 N° 8 (Décembre 2011)
[article]
in International journal of refrigeration > Vol. 34 N° 8 (Décembre 2011) . - pp. 2118–2128
Titre : Numerical investigation of gas species and energy separation in the Ranque–Hilsch vortex tube using real gas model : Etude numérique des gaz et de la séparation de l’énergie dans un tube vortex Ranque-Hilsch à l’aide d’un modèle employant un gaz réel Type de document : texte imprimé Auteurs : T. Dutta, Auteur ; K.P. Sinhamahapatra, Auteur ; S. S. Bandyopadhyay, Auteur Année de publication : 2012 Article en page(s) : pp. 2118–2128 Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Vortex tube Computational fluid dynamics Temperature Thermal diffusion Résumé : A three dimensional Computational Fluid Dynamics (CFD) model is used to investigate the phenomena of energy and species separation in a vortex tube (VT) with compressed air at normal atmospheric temperature and cryogenic temperature as the working fluid. In this work the NIST real gas model is used for the first time to accurately compute the thermodynamic and transport properties of air inside the VT. CFD simulations are carried out using the perfect gas law as well. The computed performance curves (hot and cold outlet temperatures versus hot outlet mass fraction) at normal atmospheric temperature obtained with both the real gas model and the perfect gas law are compared with the experimental results. The separation of air into its main components, i.e. oxygen and nitrogen is observed, although the separation effect is very small. The magnitudes of both the energy separation and the species separation at cryogenic temperature were found to be smaller than those at normal atmospheric temperature. ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700711001447 [article] Numerical investigation of gas species and energy separation in the Ranque–Hilsch vortex tube using real gas model : Etude numérique des gaz et de la séparation de l’énergie dans un tube vortex Ranque-Hilsch à l’aide d’un modèle employant un gaz réel [texte imprimé] / T. Dutta, Auteur ; K.P. Sinhamahapatra, Auteur ; S. S. Bandyopadhyay, Auteur . - 2012 . - pp. 2118–2128.
Génie mécanique
Langues : Anglais (eng)
in International journal of refrigeration > Vol. 34 N° 8 (Décembre 2011) . - pp. 2118–2128
Mots-clés : Vortex tube Computational fluid dynamics Temperature Thermal diffusion Résumé : A three dimensional Computational Fluid Dynamics (CFD) model is used to investigate the phenomena of energy and species separation in a vortex tube (VT) with compressed air at normal atmospheric temperature and cryogenic temperature as the working fluid. In this work the NIST real gas model is used for the first time to accurately compute the thermodynamic and transport properties of air inside the VT. CFD simulations are carried out using the perfect gas law as well. The computed performance curves (hot and cold outlet temperatures versus hot outlet mass fraction) at normal atmospheric temperature obtained with both the real gas model and the perfect gas law are compared with the experimental results. The separation of air into its main components, i.e. oxygen and nitrogen is observed, although the separation effect is very small. The magnitudes of both the energy separation and the species separation at cryogenic temperature were found to be smaller than those at normal atmospheric temperature. ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700711001447