Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Paul Belanger
Documents disponibles écrits par cet auteur
Affiner la rechercheNonlinear model predictive control of high purity distillation columns for cryogenic air separation / Zhongzhou Chen in IEEE Transactions on control systems technology, Vol. 18 N° 4 (Juillet 2010)
[article]
in IEEE Transactions on control systems technology > Vol. 18 N° 4 (Juillet 2010) . - pp. 811-821
Titre : Nonlinear model predictive control of high purity distillation columns for cryogenic air separation Type de document : texte imprimé Auteurs : Zhongzhou Chen, Auteur ; Michael A. Henson, Auteur ; Paul Belanger, Auteur Année de publication : 2011 Article en page(s) : pp. 811-821 Note générale : Génie Aérospatial Langues : Anglais (eng) Mots-clés : Nonlinear model predictive control (NMPC) Process control Real time optimization Reduced-order modeling Index. décimale : 629.1 Résumé : High purity distillation columns are critical unit operations in cryogenic air separation plants that supply purified gases to a number of industries. We have developed a nonlinear model predictive control (NMPC) strategy based on the assumption of full-state feedback for a prototypical cryogenic distillation column to allow effective operation over a wide range of plant production rates. The controller design was based on a reduced-order compartmental model derived from detailed mass and energy balances by exploiting time-scale separations. Temporal discretization of the compartmental model produced a very large set of nonlinear differential and algebraic equations with advantageous sparsity properties, enabling online solution of the NMPC problem. The synergistic combination of several real-time implementation techniques were found to be essential for further reducing computation time and allowing reliable solution within the 2-min controller sampling interval. Closed-loop simulation studies demonstrated the performance advantages of NMPC compared to linear model predictive control technology currently used in the air separation industry.
DEWEY : 629.1 ISSN : 1063-6536 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5288540 [article] Nonlinear model predictive control of high purity distillation columns for cryogenic air separation [texte imprimé] / Zhongzhou Chen, Auteur ; Michael A. Henson, Auteur ; Paul Belanger, Auteur . - 2011 . - pp. 811-821.
Génie Aérospatial
Langues : Anglais (eng)
in IEEE Transactions on control systems technology > Vol. 18 N° 4 (Juillet 2010) . - pp. 811-821
Mots-clés : Nonlinear model predictive control (NMPC) Process control Real time optimization Reduced-order modeling Index. décimale : 629.1 Résumé : High purity distillation columns are critical unit operations in cryogenic air separation plants that supply purified gases to a number of industries. We have developed a nonlinear model predictive control (NMPC) strategy based on the assumption of full-state feedback for a prototypical cryogenic distillation column to allow effective operation over a wide range of plant production rates. The controller design was based on a reduced-order compartmental model derived from detailed mass and energy balances by exploiting time-scale separations. Temporal discretization of the compartmental model produced a very large set of nonlinear differential and algebraic equations with advantageous sparsity properties, enabling online solution of the NMPC problem. The synergistic combination of several real-time implementation techniques were found to be essential for further reducing computation time and allowing reliable solution within the 2-min controller sampling interval. Closed-loop simulation studies demonstrated the performance advantages of NMPC compared to linear model predictive control technology currently used in the air separation industry.
DEWEY : 629.1 ISSN : 1063-6536 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5288540 Nonlinear model predictive control of high purity distillation columns for cryogenic air separation / Zhongzhou Chen in IEEE Transactions on control systems technology, Vol. 18 N° 4 (Juillet 2010)
[article]
in IEEE Transactions on control systems technology > Vol. 18 N° 4 (Juillet 2010) . - pp. 811-821
Titre : Nonlinear model predictive control of high purity distillation columns for cryogenic air separation Type de document : texte imprimé Auteurs : Zhongzhou Chen, Auteur ; Michael A. Henson, Auteur ; Paul Belanger, Auteur Année de publication : 2011 Article en page(s) : pp. 811-821 Note générale : Génie Aérospatial Langues : Anglais (eng) Mots-clés : Nonlinear model predictive control (NMPC) Process control Real time optimization Reduced-order modeling Index. décimale : 629.1 Résumé : High purity distillation columns are critical unit operations in cryogenic air separation plants that supply purified gases to a number of industries. We have developed a nonlinear model predictive control (NMPC) strategy based on the assumption of full-state feedback for a prototypical cryogenic distillation column to allow effective operation over a wide range of plant production rates. The controller design was based on a reduced-order compartmental model derived from detailed mass and energy balances by exploiting time-scale separations. Temporal discretization of the compartmental model produced a very large set of nonlinear differential and algebraic equations with advantageous sparsity properties, enabling online solution of the NMPC problem. The synergistic combination of several real-time implementation techniques were found to be essential for further reducing computation time and allowing reliable solution within the 2-min controller sampling interval. Closed-loop simulation studies demonstrated the performance advantages of NMPC compared to linear model predictive control technology currently used in the air separation industry.
DEWEY : 629.1 ISSN : 1063-6536 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5288540 [article] Nonlinear model predictive control of high purity distillation columns for cryogenic air separation [texte imprimé] / Zhongzhou Chen, Auteur ; Michael A. Henson, Auteur ; Paul Belanger, Auteur . - 2011 . - pp. 811-821.
Génie Aérospatial
Langues : Anglais (eng)
in IEEE Transactions on control systems technology > Vol. 18 N° 4 (Juillet 2010) . - pp. 811-821
Mots-clés : Nonlinear model predictive control (NMPC) Process control Real time optimization Reduced-order modeling Index. décimale : 629.1 Résumé : High purity distillation columns are critical unit operations in cryogenic air separation plants that supply purified gases to a number of industries. We have developed a nonlinear model predictive control (NMPC) strategy based on the assumption of full-state feedback for a prototypical cryogenic distillation column to allow effective operation over a wide range of plant production rates. The controller design was based on a reduced-order compartmental model derived from detailed mass and energy balances by exploiting time-scale separations. Temporal discretization of the compartmental model produced a very large set of nonlinear differential and algebraic equations with advantageous sparsity properties, enabling online solution of the NMPC problem. The synergistic combination of several real-time implementation techniques were found to be essential for further reducing computation time and allowing reliable solution within the 2-min controller sampling interval. Closed-loop simulation studies demonstrated the performance advantages of NMPC compared to linear model predictive control technology currently used in the air separation industry.
DEWEY : 629.1 ISSN : 1063-6536 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5288540