Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur D. Mishra
Documents disponibles écrits par cet auteur
Affiner la rechercheBioadsorption of arsenic / D. Ranjan in Industrial & engineering chemistry research, Vol. 50 N° 17 (Septembre 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 17 (Septembre 2011) . - pp. 9852-9863
Titre : Bioadsorption of arsenic : an artificial neural networks and response surface methodological approach Type de document : texte imprimé Auteurs : D. Ranjan, Auteur ; D. Mishra, Auteur ; S. H. Hasan, Auteur Année de publication : 2011 Article en page(s) : pp. 9852-9863 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Neural network Biosorption Résumé : The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arsenic concentration, temperature, and biomass dose in the case of batch mode and bed height, flow rate, and initial arsenic concentration in the case of column mode) were fed as input to the central composite design (CCD) of RSM and the ANN techniques, and the output was the uptake capacity of the sorbent. The CCD was used to evaluate the simple and combined effects of the independent parameters and to derive a second-order regression equation for predicting optimization of the process. The sets of input-output patterns were also used to train the multilayer feed-forward networks employing the backpropagation algorithm with MATLAB. The application of the RSM and ANN techniques to the available experimental data showed that ANN outperforms RSM indicating the superiority of a properly trained ANN over RSM in capturing the nonlinear behavior of the system and the simultaneous prediction of the output. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24483627 [article] Bioadsorption of arsenic : an artificial neural networks and response surface methodological approach [texte imprimé] / D. Ranjan, Auteur ; D. Mishra, Auteur ; S. H. Hasan, Auteur . - 2011 . - pp. 9852-9863.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 17 (Septembre 2011) . - pp. 9852-9863
Mots-clés : Neural network Biosorption Résumé : The estimation capacities of two optimization methodologies, response surface methodology (RSM) and artificial neural network (ANN) were evaluated for prediction of biosorptive remediation of As(III) and As(V) species in batch as well as column mode. The independent parameters (viz. pH, initial arsenic concentration, temperature, and biomass dose in the case of batch mode and bed height, flow rate, and initial arsenic concentration in the case of column mode) were fed as input to the central composite design (CCD) of RSM and the ANN techniques, and the output was the uptake capacity of the sorbent. The CCD was used to evaluate the simple and combined effects of the independent parameters and to derive a second-order regression equation for predicting optimization of the process. The sets of input-output patterns were also used to train the multilayer feed-forward networks employing the backpropagation algorithm with MATLAB. The application of the RSM and ANN techniques to the available experimental data showed that ANN outperforms RSM indicating the superiority of a properly trained ANN over RSM in capturing the nonlinear behavior of the system and the simultaneous prediction of the output. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24483627