Détail de l'auteur
Auteur O. Berman |
Documents disponibles écrits par cet auteur (1)



Discrete cooperative covering problems / O. Berman in Journal of the operational research society (JORS), Vol. 62 N° 11 (Novembre 2011)
![]()
[article]
Titre : Discrete cooperative covering problems Type de document : texte imprimé Auteurs : O. Berman, Auteur ; Z. Drezner, Auteur ; D. Krass, Auteur Année de publication : 2011 Article en page(s) : pp. 2002–2012 Note générale : Recherche opérationnelle Langues : Anglais (eng) Mots-clés : Cooperative cover Facility location Multiple facilities Index. décimale : 001.424 Résumé : A family of discrete cooperative covering problems is analysed in this paper. Each facility emits a signal that decays by the distance and each demand point observes the total signal emitted by all facilities. A demand point is covered if its cumulative signal exceeds a given threshold. We wish to maximize coverage by selecting locations for p facilities from a given set of potential sites. Two other problems that can be solved by the max-cover approach are the equivalents to set covering and p-centre problems. The problems are formulated, analysed and solved on networks. Optimal and heuristic algorithms are proposed and extensive computational experiments reported. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v62/n11/abs/jors2010176a.html
in Journal of the operational research society (JORS) > Vol. 62 N° 11 (Novembre 2011) . - pp. 2002–2012[article] Discrete cooperative covering problems [texte imprimé] / O. Berman, Auteur ; Z. Drezner, Auteur ; D. Krass, Auteur . - 2011 . - pp. 2002–2012.
Recherche opérationnelle
Langues : Anglais (eng)
in Journal of the operational research society (JORS) > Vol. 62 N° 11 (Novembre 2011) . - pp. 2002–2012
Mots-clés : Cooperative cover Facility location Multiple facilities Index. décimale : 001.424 Résumé : A family of discrete cooperative covering problems is analysed in this paper. Each facility emits a signal that decays by the distance and each demand point observes the total signal emitted by all facilities. A demand point is covered if its cumulative signal exceeds a given threshold. We wish to maximize coverage by selecting locations for p facilities from a given set of potential sites. Two other problems that can be solved by the max-cover approach are the equivalents to set covering and p-centre problems. The problems are formulated, analysed and solved on networks. Optimal and heuristic algorithms are proposed and extensive computational experiments reported. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v62/n11/abs/jors2010176a.html Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire