Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Benjamin A. Wilhite
Documents disponibles écrits par cet auteur
Affiner la rechercheComposite catalytic-permselective membranes / Benjamin A. Wilhite in Industrial & engineering chemistry research, Vol. 50 N° 17 (Septembre 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 17 (Septembre 2011) . - pp. 10185-10193
Titre : Composite catalytic-permselective membranes : a strategy for enhancing selectivity and permeation rates via reaction and diffusion Type de document : texte imprimé Auteurs : Benjamin A. Wilhite, Auteur Année de publication : 2011 Article en page(s) : pp. 10185-10193 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Diffusion Permeation Catalytic reaction Composite material Résumé : This manuscript presents a new strategy for enhancing permselective films via the addition of a porous, catalytically active layer in a composite catalytic-permselective membrane design. A general mathematical analysis of reaction and diffusion within the catalytic layer is presented in order to establish design criteria. Numerical simulations are presented for the case of the water-gas-shift reaction supporting hydrogen purification, to demonstrate the advantages of the composite catalytic-permselective design concept. For the case of a water-gas-shift catalytic coating placed atop a hydrogen-permselective dense palladium film, an 84% reduction in carbon monoxide (CO) exposure is predicted, along with a mild (8%) increase in the overall hydrogen permeation rate; this reduction in carbon monoxide contamination of the palladium surface represents a significant improvement in palladium film utilization. For the case of the same catalytic coating placed atop a carbon dioxide (CO2)-permselective polymer film, CO2-CO permselectivities are increased by two orders of magnitude. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24483662 [article] Composite catalytic-permselective membranes : a strategy for enhancing selectivity and permeation rates via reaction and diffusion [texte imprimé] / Benjamin A. Wilhite, Auteur . - 2011 . - pp. 10185-10193.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 17 (Septembre 2011) . - pp. 10185-10193
Mots-clés : Diffusion Permeation Catalytic reaction Composite material Résumé : This manuscript presents a new strategy for enhancing permselective films via the addition of a porous, catalytically active layer in a composite catalytic-permselective membrane design. A general mathematical analysis of reaction and diffusion within the catalytic layer is presented in order to establish design criteria. Numerical simulations are presented for the case of the water-gas-shift reaction supporting hydrogen purification, to demonstrate the advantages of the composite catalytic-permselective design concept. For the case of a water-gas-shift catalytic coating placed atop a hydrogen-permselective dense palladium film, an 84% reduction in carbon monoxide (CO) exposure is predicted, along with a mild (8%) increase in the overall hydrogen permeation rate; this reduction in carbon monoxide contamination of the palladium surface represents a significant improvement in palladium film utilization. For the case of the same catalytic coating placed atop a carbon dioxide (CO2)-permselective polymer film, CO2-CO permselectivities are increased by two orders of magnitude. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24483662 Parametric study of solid-Phase axial heat conduction in thermally integrated microchannel networks / Angela Moreno in Industrial & engineering chemistry research, Vol. 47 N° 23 (Décembre 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 N° 23 (Décembre 2008) . - p. 9040–9054
Titre : Parametric study of solid-Phase axial heat conduction in thermally integrated microchannel networks Type de document : texte imprimé Auteurs : Angela Moreno, Auteur ; Kevin Murphy, Auteur ; Benjamin A. Wilhite, Auteur Année de publication : 2009 Article en page(s) : p. 9040–9054 Note générale : Chemistry engineering Langues : Anglais (eng) Mots-clés : Parametric Study of Solid-Phase Axial Heat Conduction in Thermally Integrated Microchannel Networks Résumé : A parametric study is presented to highlight design challenges of thermally integrated microchannel networks for portable chemistry and/or fuels reforming. One-dimensional modeling analysis of heat transfer in a two-fluid system is presented for the case of (i) two nonreacting fluids (heat exchanger), (ii) a single exothermic reacting fluid and a second nonreacting fluid (regenerative combustor), and (iii) one exothermic reacting fluid and a second endothermic reacting fluid (heat exchanger reactor). In each case, the influence of solid-phase thermal conductivity and thermal packaging upon thermal efficiency, reaction conversion, and steady-state multiplicity is investigated. Results demonstrate the importance of both packaging and solid-phase axial thermal conduction upon system performance, with optimal performance obtained using low thermal conductivity substrates. Modeling analysis predicts steady-state multiplicity when employing low thermal conductivity materials, illustrating the need for future detailed stability analysis. Lastly, simplified mechanical analysis is presented to illustrate the value of coupled thermomechanical analysis. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie8001638 [article] Parametric study of solid-Phase axial heat conduction in thermally integrated microchannel networks [texte imprimé] / Angela Moreno, Auteur ; Kevin Murphy, Auteur ; Benjamin A. Wilhite, Auteur . - 2009 . - p. 9040–9054.
Chemistry engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 N° 23 (Décembre 2008) . - p. 9040–9054
Mots-clés : Parametric Study of Solid-Phase Axial Heat Conduction in Thermally Integrated Microchannel Networks Résumé : A parametric study is presented to highlight design challenges of thermally integrated microchannel networks for portable chemistry and/or fuels reforming. One-dimensional modeling analysis of heat transfer in a two-fluid system is presented for the case of (i) two nonreacting fluids (heat exchanger), (ii) a single exothermic reacting fluid and a second nonreacting fluid (regenerative combustor), and (iii) one exothermic reacting fluid and a second endothermic reacting fluid (heat exchanger reactor). In each case, the influence of solid-phase thermal conductivity and thermal packaging upon thermal efficiency, reaction conversion, and steady-state multiplicity is investigated. Results demonstrate the importance of both packaging and solid-phase axial thermal conduction upon system performance, with optimal performance obtained using low thermal conductivity substrates. Modeling analysis predicts steady-state multiplicity when employing low thermal conductivity materials, illustrating the need for future detailed stability analysis. Lastly, simplified mechanical analysis is presented to illustrate the value of coupled thermomechanical analysis. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie8001638