[article] in Techniques de l'ingénieur E > Vol. E4 (Trimestriel) . - 5 p. Titre : | Décharges électrostatiques: application à l'industrie électronique | Type de document : | texte imprimé | Auteurs : | Vagneur, Jean-Louis, Auteur | Année de publication : | 2007 | Article en page(s) : | 5 p. | Note générale : | Bibliogr. | Langues : | Français (fre) | Mots-clés : | Décharge Electrostatiques Industrie électronique | Résumé : | Tout matériau peut être porteur de charges statiques après électrisation (acquisition de charges) provoquée par différentes causes telles que le frottement, la charge par influence (ou induction électrostatique), le transfert de charges par contact, etc. Les décharges électrostatiques sont caractérisées par le passage d'un courant impulsionnel entre deux matériaux chargés à des potentiels différents, soit par contact direct, soit par décharge disruptive dans l'air. Cet article présente succinctement les phénomènes générateurs de charges électrostatiques, et les caractéristiques des matériaux selon leur aptitude à dissiper ces charges.
Dans le cas des équipements électroniques, la prévention contre les DES repose sur le contrôle et l'écoulement à la terre des charges statiques pouvant être générées à tous les stades de la fabrication, de la réception des composants et des cartes équipées jusqu'à la livraison de l'équipement. Pour cela, tout un ensemble de moyens de protection est mis en œuvre : création de zones protégées et balisées avec sol dissipateur, avec port de vêtements et de chaussures dissipatrices pour le personnel y ayant accès, mise résistive à la terre des opérateurs, des plans de travail, des outillages, emploi d'emballages astatiques (matériau minimisant toute génération de charges) ou dissipateurs, etc.
Si on considère les composants électroniques, la diminution continue de leur taille augmente leur sensibilité aux DES, donc les risques de dysfonctionnement ou de destruction de ces composants, et de défaillance des équipements utilisateurs. Par exemple, dans les transistors couche mince (Thin-Film Transistor) des écrans plats, le courant de drain augmente rapidement avec la tension drain-source, d'où un risque de destruction en cas de surtension. L'utilisation de modèles de décharges électrostatiques dans les différents scénarios rencontrés dans l'industrie électronique est donc nécessaire pour mettre en œuvre des moyens de protection des entrées/sorties des composants et valider expérimentalement leur tenue.
| REFERENCE : | E 1 325 | DEWEY : | 621.381 | Date : | Aout 2011 | En ligne : | http://www.techniques-ingenieur.fr/base-documentaire/electronique-photonique-th1 [...] |
[article] Décharges électrostatiques: application à l'industrie électronique [texte imprimé] / Vagneur, Jean-Louis, Auteur . - 2007 . - 5 p. Bibliogr. Langues : Français ( fre) in Techniques de l'ingénieur E > Vol. E4 (Trimestriel) . - 5 p. Mots-clés : | Décharge Electrostatiques Industrie électronique | Résumé : | Tout matériau peut être porteur de charges statiques après électrisation (acquisition de charges) provoquée par différentes causes telles que le frottement, la charge par influence (ou induction électrostatique), le transfert de charges par contact, etc. Les décharges électrostatiques sont caractérisées par le passage d'un courant impulsionnel entre deux matériaux chargés à des potentiels différents, soit par contact direct, soit par décharge disruptive dans l'air. Cet article présente succinctement les phénomènes générateurs de charges électrostatiques, et les caractéristiques des matériaux selon leur aptitude à dissiper ces charges.
Dans le cas des équipements électroniques, la prévention contre les DES repose sur le contrôle et l'écoulement à la terre des charges statiques pouvant être générées à tous les stades de la fabrication, de la réception des composants et des cartes équipées jusqu'à la livraison de l'équipement. Pour cela, tout un ensemble de moyens de protection est mis en œuvre : création de zones protégées et balisées avec sol dissipateur, avec port de vêtements et de chaussures dissipatrices pour le personnel y ayant accès, mise résistive à la terre des opérateurs, des plans de travail, des outillages, emploi d'emballages astatiques (matériau minimisant toute génération de charges) ou dissipateurs, etc.
Si on considère les composants électroniques, la diminution continue de leur taille augmente leur sensibilité aux DES, donc les risques de dysfonctionnement ou de destruction de ces composants, et de défaillance des équipements utilisateurs. Par exemple, dans les transistors couche mince (Thin-Film Transistor) des écrans plats, le courant de drain augmente rapidement avec la tension drain-source, d'où un risque de destruction en cas de surtension. L'utilisation de modèles de décharges électrostatiques dans les différents scénarios rencontrés dans l'industrie électronique est donc nécessaire pour mettre en œuvre des moyens de protection des entrées/sorties des composants et valider expérimentalement leur tenue.
| REFERENCE : | E 1 325 | DEWEY : | 621.381 | Date : | Aout 2011 | En ligne : | http://www.techniques-ingenieur.fr/base-documentaire/electronique-photonique-th1 [...] |
|