[article]
Titre : |
Prediction of the effective area in structured packings by computational fluid dynamics |
Type de document : |
texte imprimé |
Auteurs : |
Saeed Shojaee, Auteur ; Seyyed Hossein Hosseini, Auteur ; Arash Rafati, Auteur |
Année de publication : |
2011 |
Article en page(s) : |
pp. 10833-10842 |
Note générale : |
Chimie industrielle |
Langues : |
Anglais (eng) |
Mots-clés : |
Computational fluid dynamics Ordered packing Prediction |
Résumé : |
Careful examination of the correlations for the effective interfadal area of the structured packed columns in the literature reveals considerable discrepancies in the estimated areas and the associated gas velocities. In this study, a volume of fluid multiphase-flow model for two adjacent sheets of a Gempak 2A structured packing was used to investigate the effect ofgas and liquid velocities on the effective area of the packing sheets. The three-dimensional computational fluid dynamic (CFD) results showed that the gas and liquid flow rates play significant roles in the effective interfacial area of the packed bed. In particular, the effective area increases as the flow rates of both phases increase. The simulation results were compared with the existing correlations for the effective area, and it was found that the Brunazzi model exhibits good agreement with the CFD results in comparison with the existing correlations. Using the CFD model, the minimum flow rate 109.8 m3/m2·h for which the entire surface covered by the liquid phase was determined The simulation results showed that the CFD can be used as an effective tool to provide information on the details of the gas and liquid flows in complex packing geometries. |
DEWEY : |
660 |
ISSN : |
0888-5885 |
En ligne : |
http://cat.inist.fr/?aModele=afficheN&cpsidt=24523900 |
in Industrial & engineering chemistry research > Vol. 50 N° 18 (Septembre 2011) . - pp. 10833-10842
[article] Prediction of the effective area in structured packings by computational fluid dynamics [texte imprimé] / Saeed Shojaee, Auteur ; Seyyed Hossein Hosseini, Auteur ; Arash Rafati, Auteur . - 2011 . - pp. 10833-10842. Chimie industrielle Langues : Anglais ( eng) in Industrial & engineering chemistry research > Vol. 50 N° 18 (Septembre 2011) . - pp. 10833-10842
Mots-clés : |
Computational fluid dynamics Ordered packing Prediction |
Résumé : |
Careful examination of the correlations for the effective interfadal area of the structured packed columns in the literature reveals considerable discrepancies in the estimated areas and the associated gas velocities. In this study, a volume of fluid multiphase-flow model for two adjacent sheets of a Gempak 2A structured packing was used to investigate the effect ofgas and liquid velocities on the effective area of the packing sheets. The three-dimensional computational fluid dynamic (CFD) results showed that the gas and liquid flow rates play significant roles in the effective interfacial area of the packed bed. In particular, the effective area increases as the flow rates of both phases increase. The simulation results were compared with the existing correlations for the effective area, and it was found that the Brunazzi model exhibits good agreement with the CFD results in comparison with the existing correlations. Using the CFD model, the minimum flow rate 109.8 m3/m2·h for which the entire surface covered by the liquid phase was determined The simulation results showed that the CFD can be used as an effective tool to provide information on the details of the gas and liquid flows in complex packing geometries. |
DEWEY : |
660 |
ISSN : |
0888-5885 |
En ligne : |
http://cat.inist.fr/?aModele=afficheN&cpsidt=24523900 |
|