Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Chang Jun Lee
Documents disponibles écrits par cet auteur
Affiner la rechercheStochastic nonlinear optimization for robust design of catalysts / Chang Jun Lee in Industrial & engineering chemistry research, Vol. 50 N° 7 (Avril 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 7 (Avril 2011) . - pp. 3938–3946
Titre : Stochastic nonlinear optimization for robust design of catalysts Type de document : texte imprimé Auteurs : Chang Jun Lee, Auteur ; Vinay Prasad, Auteur ; Jong Min Lee, Auteur Année de publication : 2011 Article en page(s) : pp. 3938–3946 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Optimal catalyst Résumé : Computational methods for designing an optimal catalyst have recently received much attention, especially for energy-related applications. What is lacking in the previous methods is an explicit method to handle uncertainties in the complex models used, so that a robust design is achieved. This work proposes a stochastic optimization method for designing a robust catalyst. In particular, reactions involved in catalytic decomposition of ammonia are presented, and uncertainties associated with experimental determination of kinetic parameters are represented as exogenous variables with assumed probability distributions. The problem is formulated in terms of finding the optimal binding energies that maximize conversion in a microreactor. The resulting stochastic optimization problem is nonlinear, and involves the expectation operator as well as integration in the objective function. This difficult optimization problem is tackled by a population sample based approach, referred to as particle swarm optimization. The results show that the value of solving the stochastic problem is significant, and that it can provide a more robust solution compared to the certainty equivalence approach. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie102103w [article] Stochastic nonlinear optimization for robust design of catalysts [texte imprimé] / Chang Jun Lee, Auteur ; Vinay Prasad, Auteur ; Jong Min Lee, Auteur . - 2011 . - pp. 3938–3946.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 7 (Avril 2011) . - pp. 3938–3946
Mots-clés : Optimal catalyst Résumé : Computational methods for designing an optimal catalyst have recently received much attention, especially for energy-related applications. What is lacking in the previous methods is an explicit method to handle uncertainties in the complex models used, so that a robust design is achieved. This work proposes a stochastic optimization method for designing a robust catalyst. In particular, reactions involved in catalytic decomposition of ammonia are presented, and uncertainties associated with experimental determination of kinetic parameters are represented as exogenous variables with assumed probability distributions. The problem is formulated in terms of finding the optimal binding energies that maximize conversion in a microreactor. The resulting stochastic optimization problem is nonlinear, and involves the expectation operator as well as integration in the objective function. This difficult optimization problem is tackled by a population sample based approach, referred to as particle swarm optimization. The results show that the value of solving the stochastic problem is significant, and that it can provide a more robust solution compared to the certainty equivalence approach. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie102103w