Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Saeed Mazinani
Documents disponibles écrits par cet auteur
Affiner la rechercheUsing a multilayer perceptron network for thermal conductivity prediction of aqueous electrolyte solutions / Reza Eslamloueyan in Industrial & engineering chemistry research, Vol. 50 N° 7 (Avril 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 7 (Avril 2011) . - pp. 4050-4056
Titre : Using a multilayer perceptron network for thermal conductivity prediction of aqueous electrolyte solutions Type de document : texte imprimé Auteurs : Reza Eslamloueyan, Auteur ; Mohammad H. Khademi, Auteur ; Saeed Mazinani, Auteur Année de publication : 2011 Article en page(s) : pp. 4050-4056 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Electrolyte solution Prediction Thermal conductivity Multiple layer Résumé : In this study, a multilayer perceptron (MLP) network is proposed to predict the thermal conductivity (λ) of an electrolyte solution at atmospheric pressure, over a wide range of temperatures (T) and concentrations (x) based on the molecular weight (M) and number of electrons (n) of the solute. The accuracy of the proposed artificial neural network (ANN) was evaluated through performing a regression analysis on the predicted and experimental values of various aqueous solutions, some of which were not used in the network training. The comparison of the developed MLP network to other correlations recommended in the literature indicates that the proposed neural network outperforms other alternative methods, with respect to accuracy as well as extrapolation capabilities. Besides, others' conductivity correlations are usually suggested for a specific electrolyte solution and a limited range of temperatures and concentrations, while such limitations do not exist for the proposed MLP network. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24027652 [article] Using a multilayer perceptron network for thermal conductivity prediction of aqueous electrolyte solutions [texte imprimé] / Reza Eslamloueyan, Auteur ; Mohammad H. Khademi, Auteur ; Saeed Mazinani, Auteur . - 2011 . - pp. 4050-4056.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 7 (Avril 2011) . - pp. 4050-4056
Mots-clés : Electrolyte solution Prediction Thermal conductivity Multiple layer Résumé : In this study, a multilayer perceptron (MLP) network is proposed to predict the thermal conductivity (λ) of an electrolyte solution at atmospheric pressure, over a wide range of temperatures (T) and concentrations (x) based on the molecular weight (M) and number of electrons (n) of the solute. The accuracy of the proposed artificial neural network (ANN) was evaluated through performing a regression analysis on the predicted and experimental values of various aqueous solutions, some of which were not used in the network training. The comparison of the developed MLP network to other correlations recommended in the literature indicates that the proposed neural network outperforms other alternative methods, with respect to accuracy as well as extrapolation capabilities. Besides, others' conductivity correlations are usually suggested for a specific electrolyte solution and a limited range of temperatures and concentrations, while such limitations do not exist for the proposed MLP network. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24027652