Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jarod M. Younker
Documents disponibles écrits par cet auteur
Affiner la rechercheNumerical integration of the chemical rate equations via a discretized adomian decomposition / Jarod M. Younker in Industrial & engineering chemistry research, Vol. 50 N° 6 (Mars 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 6 (Mars 2011) . - pp. 3100–3109
Titre : Numerical integration of the chemical rate equations via a discretized adomian decomposition Type de document : texte imprimé Auteurs : Jarod M. Younker, Auteur Année de publication : 2011 Article en page(s) : pp. 3100–3109 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Adomian decomposition methods Résumé : Chemists are frequently interested in rate equations, which are first-order differential equations. Numerical integration of these equations allows the researcher to accurately predict the concentrations of chemical species at any time given the initial conditions. Explicit Runge−Kutta (RK) integration is widely used for solving the rate equations. In this article, Adomian decomposition methods (ADM) are used to obtain the solutions of chemical rate equations. The Adomian method outlined here outperforms high-order RK routines in the arenas of accuracy and truncation error. Additionally, four modifications are introduced that place the Adomian integration on par with RK in terms of speed (a primary reason for which Adomian decomposition methods are currently underemployed). The inclusion of up to the fifth term in the Adomian expansion gives a truncation error of order O(h10). The method as presented yields solutions which are step-size independent in the nonstiff regime. The problem of rapid polynomial divergence is addressed through discretizing the time axis. Performance of the ADM method against an implicit algorithm is also given. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie1008647 [article] Numerical integration of the chemical rate equations via a discretized adomian decomposition [texte imprimé] / Jarod M. Younker, Auteur . - 2011 . - pp. 3100–3109.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 6 (Mars 2011) . - pp. 3100–3109
Mots-clés : Adomian decomposition methods Résumé : Chemists are frequently interested in rate equations, which are first-order differential equations. Numerical integration of these equations allows the researcher to accurately predict the concentrations of chemical species at any time given the initial conditions. Explicit Runge−Kutta (RK) integration is widely used for solving the rate equations. In this article, Adomian decomposition methods (ADM) are used to obtain the solutions of chemical rate equations. The Adomian method outlined here outperforms high-order RK routines in the arenas of accuracy and truncation error. Additionally, four modifications are introduced that place the Adomian integration on par with RK in terms of speed (a primary reason for which Adomian decomposition methods are currently underemployed). The inclusion of up to the fifth term in the Adomian expansion gives a truncation error of order O(h10). The method as presented yields solutions which are step-size independent in the nonstiff regime. The problem of rapid polynomial divergence is addressed through discretizing the time axis. Performance of the ADM method against an implicit algorithm is also given. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie1008647