Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Wang Yaonan
Documents disponibles écrits par cet auteur
Affiner la rechercheRBF Networks-based adaptive inverse model control system for electronic throttle / Yuan Xiaofang in IEEE Transactions on control systems technology, Vol. 18 N° 3 (Mai 2010)
[article]
in IEEE Transactions on control systems technology > Vol. 18 N° 3 (Mai 2010) . - pp. 750-756
Titre : RBF Networks-based adaptive inverse model control system for electronic throttle Type de document : texte imprimé Auteurs : Yuan Xiaofang, Auteur ; Wang Yaonan, Auteur ; Wei Sun, Auteur Année de publication : 2011 Article en page(s) : pp. 750-756 Note générale : Génie Aérospatial Langues : Anglais (eng) Mots-clés : Back-propagation Electronic throttle Inverse model control Model identification Neural networks Index. décimale : 629.1 Résumé : An electronic throttle is a dc-motor-driven valve that regulates air inflow into the combustion system of the engine. An effective controller for electronic throttle is not easy to accomplish since the plant is burdened with strong nonlinear effects of stick-slip friction, spring, and gear backlash. In this brief, an adaptive inverse model control system (AIMCS) is designed for the plant, and two radial basis function (RBF) neural networks are utilized in the AIMCS. The plant is identified by a RBF networks identifier, which provides the sensitivity information of the plant to the control input. And another RBF networks is utilized as inverse model controller established by inverse system method. The RBF networks are offline learned firstly and are online trained using back propagation algorithms. To guarantee convergence and for faster learning, adaptive learning rates are developed. Simulation and experiment results show the effectiveness of the AIMCS.
DEWEY : 629.1 ISSN : 1063-6536 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5256140 [article] RBF Networks-based adaptive inverse model control system for electronic throttle [texte imprimé] / Yuan Xiaofang, Auteur ; Wang Yaonan, Auteur ; Wei Sun, Auteur . - 2011 . - pp. 750-756.
Génie Aérospatial
Langues : Anglais (eng)
in IEEE Transactions on control systems technology > Vol. 18 N° 3 (Mai 2010) . - pp. 750-756
Mots-clés : Back-propagation Electronic throttle Inverse model control Model identification Neural networks Index. décimale : 629.1 Résumé : An electronic throttle is a dc-motor-driven valve that regulates air inflow into the combustion system of the engine. An effective controller for electronic throttle is not easy to accomplish since the plant is burdened with strong nonlinear effects of stick-slip friction, spring, and gear backlash. In this brief, an adaptive inverse model control system (AIMCS) is designed for the plant, and two radial basis function (RBF) neural networks are utilized in the AIMCS. The plant is identified by a RBF networks identifier, which provides the sensitivity information of the plant to the control input. And another RBF networks is utilized as inverse model controller established by inverse system method. The RBF networks are offline learned firstly and are online trained using back propagation algorithms. To guarantee convergence and for faster learning, adaptive learning rates are developed. Simulation and experiment results show the effectiveness of the AIMCS.
DEWEY : 629.1 ISSN : 1063-6536 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5256140