Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yan Sun
Documents disponibles écrits par cet auteur
Affiner la rechercheFabrication of bimodal porous CaTiO3 microspheres using composite agarose/CaCO3 beads as template / Kai-Feng Du in Industrial & engineering chemistry research, Vol. 49 N° 24 (Décembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 24 (Décembre 2010) . - pp. 12560–12566
Titre : Fabrication of bimodal porous CaTiO3 microspheres using composite agarose/CaCO3 beads as template Type de document : texte imprimé Auteurs : Kai-Feng Du, Auteur ; Xiao-Yan Dong, Auteur ; Yan Sun, Auteur Année de publication : 2011 Article en page(s) : pp. 12560–12566 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Microspheres Bimodal porous Résumé : Agarose gel entrapping CaCO3 granules is used for the synthesis of bimodal porous CaTiO3 beads by a method that combines a sol−gel process and solid phase reaction, in which CaCO3 (1.05 μm) performed as both calcium resource and porogen for creating macropores. The amount of CaCO3 granules embedded in agarose gel is varied from 0 to 16 wt %, and the macropores on the surface and in the inner of final CaTiO3 beads are investigated. It is found that the addition of 12 wt % of CaCO3 produced CaTiO3 beads that present interconnected macropores of about 745 ± 20 nm. The calcination temperature affects the surface area, mesopore size, phase state, and crystalline size of the CaTiO3 beads. By calcination at 450 °C, the CaTiO3 beads prepared by the addition of 12 wt % CaCO3 are amorphous with an average pore size of 9 nm and possess a high surface area of about 225 m2 g−1. With an increase of temperature to 600, 750, and 900 °C, the CaTiO3 is transformed into perovskite in size of about 32, 34, and 37 nm with mesopores of about 20, 23, and 24 nm, respectively, and its specific surface area decreases below 20 m2 g−1. The bimodal porous CaTiO3 beads of about 15 μm are packed into a column for investigating its chromatographic performance. The column shows much higher column efficiency than that packed with CaTiO3 beads without removal of the porogen. The remarkably high separation performance is attributed to the unique surface property and interconnected macropores present in the CaTiO3 beads. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901727s [article] Fabrication of bimodal porous CaTiO3 microspheres using composite agarose/CaCO3 beads as template [texte imprimé] / Kai-Feng Du, Auteur ; Xiao-Yan Dong, Auteur ; Yan Sun, Auteur . - 2011 . - pp. 12560–12566.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 24 (Décembre 2010) . - pp. 12560–12566
Mots-clés : Microspheres Bimodal porous Résumé : Agarose gel entrapping CaCO3 granules is used for the synthesis of bimodal porous CaTiO3 beads by a method that combines a sol−gel process and solid phase reaction, in which CaCO3 (1.05 μm) performed as both calcium resource and porogen for creating macropores. The amount of CaCO3 granules embedded in agarose gel is varied from 0 to 16 wt %, and the macropores on the surface and in the inner of final CaTiO3 beads are investigated. It is found that the addition of 12 wt % of CaCO3 produced CaTiO3 beads that present interconnected macropores of about 745 ± 20 nm. The calcination temperature affects the surface area, mesopore size, phase state, and crystalline size of the CaTiO3 beads. By calcination at 450 °C, the CaTiO3 beads prepared by the addition of 12 wt % CaCO3 are amorphous with an average pore size of 9 nm and possess a high surface area of about 225 m2 g−1. With an increase of temperature to 600, 750, and 900 °C, the CaTiO3 is transformed into perovskite in size of about 32, 34, and 37 nm with mesopores of about 20, 23, and 24 nm, respectively, and its specific surface area decreases below 20 m2 g−1. The bimodal porous CaTiO3 beads of about 15 μm are packed into a column for investigating its chromatographic performance. The column shows much higher column efficiency than that packed with CaTiO3 beads without removal of the porogen. The remarkably high separation performance is attributed to the unique surface property and interconnected macropores present in the CaTiO3 beads. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie901727s