Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jingbo Jiang
Documents disponibles écrits par cet auteur
Affiner la rechercheSystem design and modeling of a time-varying, nonlinear temperature controller for microfluidics / Govind V. Kaigala in IEEE Transactions on control systems technology, Vol. 18 N° 2 (Mars 2010)
[article]
in IEEE Transactions on control systems technology > Vol. 18 N° 2 (Mars 2010) . - pp. 521-530
Titre : System design and modeling of a time-varying, nonlinear temperature controller for microfluidics Type de document : texte imprimé Auteurs : Govind V. Kaigala, Auteur ; Jingbo Jiang, Auteur ; Christopher J. Backhouse, Auteur Année de publication : 2011 Article en page(s) : pp. 521-530 Note générale : Génie Aérospatial Langues : Anglais (eng) Mots-clés : Microchip genetic amplification Microfluidics System identification Thermal management Index. décimale : 629.1 Résumé : We present a custom-made temperature control system for performing sensitive biochemical reactions within a microfluidic platform. The thermoelectric module (TEM)-based system is part of a microfluidic platform for genetic basis of disease diagnosis. Multistage TEMs with individualized control are used to improve the response speeds compared to a single TEM. Currently, there exists neither a mathematical representation to predict the TEMs' response, nor any standardized approach to identify such systems-both of which will greatly assist in effectively controlling the temperature of the TEMs. Hence, we propose here an approach for system identification of these nonlinear elements in a cascade configuration. In this customized TEM configuration, a linear multiple-input-multi-output (MIMO) structure with temperature difference variables as the system outputs is chosen to derive the system model for subsequent controller design. For the application of temperature cycling between different set-points, a group of model-based controllers with switching strategy is designed, and for each set-point region, an internal model-based decentralized controller is implemented. Both simulation and experimental results demonstrate that the switching controller exhibits superior control performance for fast tracking (~ 6??C/s slew rate) and low steady state error (??0.1??C) when compared to a non-switching controller. The controller design approach can easily be extended to further multi-channel modules for wider applicability. Here, the integration of cost-effective and thermally-efficient physical temperature control elements with a switching and decentralized controller is applied to viral detection, which serves as the validation of the system identification-based controller.
DEWEY : 629.1 ISSN : 1063-6536 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5109473 [article] System design and modeling of a time-varying, nonlinear temperature controller for microfluidics [texte imprimé] / Govind V. Kaigala, Auteur ; Jingbo Jiang, Auteur ; Christopher J. Backhouse, Auteur . - 2011 . - pp. 521-530.
Génie Aérospatial
Langues : Anglais (eng)
in IEEE Transactions on control systems technology > Vol. 18 N° 2 (Mars 2010) . - pp. 521-530
Mots-clés : Microchip genetic amplification Microfluidics System identification Thermal management Index. décimale : 629.1 Résumé : We present a custom-made temperature control system for performing sensitive biochemical reactions within a microfluidic platform. The thermoelectric module (TEM)-based system is part of a microfluidic platform for genetic basis of disease diagnosis. Multistage TEMs with individualized control are used to improve the response speeds compared to a single TEM. Currently, there exists neither a mathematical representation to predict the TEMs' response, nor any standardized approach to identify such systems-both of which will greatly assist in effectively controlling the temperature of the TEMs. Hence, we propose here an approach for system identification of these nonlinear elements in a cascade configuration. In this customized TEM configuration, a linear multiple-input-multi-output (MIMO) structure with temperature difference variables as the system outputs is chosen to derive the system model for subsequent controller design. For the application of temperature cycling between different set-points, a group of model-based controllers with switching strategy is designed, and for each set-point region, an internal model-based decentralized controller is implemented. Both simulation and experimental results demonstrate that the switching controller exhibits superior control performance for fast tracking (~ 6??C/s slew rate) and low steady state error (??0.1??C) when compared to a non-switching controller. The controller design approach can easily be extended to further multi-channel modules for wider applicability. Here, the integration of cost-effective and thermally-efficient physical temperature control elements with a switching and decentralized controller is applied to viral detection, which serves as the validation of the system identification-based controller.
DEWEY : 629.1 ISSN : 1063-6536 En ligne : http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5109473