Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Joseph E. Gatt
Documents disponibles écrits par cet auteur
Affiner la rechercheSimulating the performance of a catalytic microsensor for quantifying ethanol in inert and reactive environments / Hari Nair in Industrial & engineering chemistry research, Vol. 50 N° 19 (Octobre 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 19 (Octobre 2011) . - pp. 10972-10981
Titre : Simulating the performance of a catalytic microsensor for quantifying ethanol in inert and reactive environments Type de document : texte imprimé Auteurs : Hari Nair, Auteur ; Joseph E. Gatt, Auteur ; Rong Zhang, Auteur Année de publication : 2011 Article en page(s) : pp. 10972-10981 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Microsensor Catalytic reaction Résumé : The selective detection of hydrocarbons using portable microsensors remains a fundamental challenge in materials and microsystem development. This work describes the functioning of a proposed thermoelectric catalytic microsensor using a metal oxide catalyst and a selective partial oxidation reaction for ethanol detection in complex hydrocarbon mixtures containing hundreds ofhydrocarbons present in gasoline fuel. In the case where the competing hydrocarbons are nonreactive, 100% selectivity toward ethanol would be obtained and quantification is straightforward—this case is simulated using ethanol in an inert atmosphere. As an example of detection and quantification in the presence of other reactants, a two step detection sequence is presented for the identification of ethanol concentrations in a hydrocarbon mixture containing methanol. Two-dimensional COMSOL simulations are performed, using known kinetic parameters for ethanol and methanol partial oxidation to acetaldehyde and formaldehyde, respectively, over the chosen iron molybdate catalyst at 353 K, to characterize temperature and concentration profiles within the microelectric thermal sensor/catalytic microreactor, which in turn can be used as a database for a genetic search algorithm used in a real device under unknown environments. Additionally, the knowledge of expected temperature profiles allows one to optimize design parameters for the device to maximize sensor sensitivity and performance for ethanol/methanol verification in complex mixtures. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24573292 [article] Simulating the performance of a catalytic microsensor for quantifying ethanol in inert and reactive environments [texte imprimé] / Hari Nair, Auteur ; Joseph E. Gatt, Auteur ; Rong Zhang, Auteur . - 2011 . - pp. 10972-10981.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 19 (Octobre 2011) . - pp. 10972-10981
Mots-clés : Microsensor Catalytic reaction Résumé : The selective detection of hydrocarbons using portable microsensors remains a fundamental challenge in materials and microsystem development. This work describes the functioning of a proposed thermoelectric catalytic microsensor using a metal oxide catalyst and a selective partial oxidation reaction for ethanol detection in complex hydrocarbon mixtures containing hundreds ofhydrocarbons present in gasoline fuel. In the case where the competing hydrocarbons are nonreactive, 100% selectivity toward ethanol would be obtained and quantification is straightforward—this case is simulated using ethanol in an inert atmosphere. As an example of detection and quantification in the presence of other reactants, a two step detection sequence is presented for the identification of ethanol concentrations in a hydrocarbon mixture containing methanol. Two-dimensional COMSOL simulations are performed, using known kinetic parameters for ethanol and methanol partial oxidation to acetaldehyde and formaldehyde, respectively, over the chosen iron molybdate catalyst at 353 K, to characterize temperature and concentration profiles within the microelectric thermal sensor/catalytic microreactor, which in turn can be used as a database for a genetic search algorithm used in a real device under unknown environments. Additionally, the knowledge of expected temperature profiles allows one to optimize design parameters for the device to maximize sensor sensitivity and performance for ethanol/methanol verification in complex mixtures. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24573292