Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur David J. Couling
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalysis of hydroxide sorbents for CO2 capture from warm syngas / David J. Couling in Industrial & engineering chemistry research, Vol. 51 N° 41 (Octobre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 41 (Octobre 2012) . - pp. 13473–13481
Titre : Analysis of hydroxide sorbents for CO2 capture from warm syngas Type de document : texte imprimé Auteurs : David J. Couling, Auteur ; Ujjal Das, Auteur ; William H. Green, Auteur Année de publication : 2012 Article en page(s) : pp. 13473–13481 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Hydroxide Sorbents Résumé : Integrated gasification combined cycle (IGCC) with CO2 capture and sequestration (CCS) is a promising technology to efficiently mitigate the emission of CO2. Warm CO2 removal has been predicted to make the CO2 capture process more efficient. Here, we investigate the efficiency penalties associated with CO2 removal via a pressure swing adsorption (PSA) process using metal hydroxide sorbents at elevated temperature. We use numerical models constructed in MATLAB and integrate these with Aspen Plus process simulations. We apply these models to both general metal hydroxides of variable enthalpy of adsorption and real metal hydroxides identified using density functional theory (DFT) calculations. We show that having an enthalpy of adsorption between 15 and 20 kJ/mol results in a PSA process that gives an overall IGCC–CCS efficiency that is competitive with the conventional IGCC–CCS process using (cold) Selexol. An enthalpy of adsorption of 20 kJ/mol is predicted to be the most favorable because it yielded a promising combination of HHV efficiency and higher working capacity. In addition, we identify Fe(OH)2, Co(OH)2, Ni(OH)2, and Zn(OH)2 as potentially favorable real materials, with IGCC–CCS efficiencies predicted to be within 1% HHV of that of Selexol. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie300189a [article] Analysis of hydroxide sorbents for CO2 capture from warm syngas [texte imprimé] / David J. Couling, Auteur ; Ujjal Das, Auteur ; William H. Green, Auteur . - 2012 . - pp. 13473–13481.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 41 (Octobre 2012) . - pp. 13473–13481
Mots-clés : Hydroxide Sorbents Résumé : Integrated gasification combined cycle (IGCC) with CO2 capture and sequestration (CCS) is a promising technology to efficiently mitigate the emission of CO2. Warm CO2 removal has been predicted to make the CO2 capture process more efficient. Here, we investigate the efficiency penalties associated with CO2 removal via a pressure swing adsorption (PSA) process using metal hydroxide sorbents at elevated temperature. We use numerical models constructed in MATLAB and integrate these with Aspen Plus process simulations. We apply these models to both general metal hydroxides of variable enthalpy of adsorption and real metal hydroxides identified using density functional theory (DFT) calculations. We show that having an enthalpy of adsorption between 15 and 20 kJ/mol results in a PSA process that gives an overall IGCC–CCS efficiency that is competitive with the conventional IGCC–CCS process using (cold) Selexol. An enthalpy of adsorption of 20 kJ/mol is predicted to be the most favorable because it yielded a promising combination of HHV efficiency and higher working capacity. In addition, we identify Fe(OH)2, Co(OH)2, Ni(OH)2, and Zn(OH)2 as potentially favorable real materials, with IGCC–CCS efficiencies predicted to be within 1% HHV of that of Selexol. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie300189a Analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined - Cycle power with CO2 capture and sequestration / David J. Couling in Industrial & engineering chemistry research, Vol. 50 N° 19 (Octobre 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 19 (Octobre 2011) . - pp. 11313-11336
Titre : Analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined - Cycle power with CO2 capture and sequestration Type de document : texte imprimé Auteurs : David J. Couling, Auteur ; Kshitij Prakash, Auteur ; William H. Green, Auteur Année de publication : 2011 Article en page(s) : pp. 11313-11336 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Carbon dioxide Gasification Synthesis gas Résumé : Integrated gasification combined cycle (IGCC) with CO2 capture and sequestration (CCS) offers a promising approach for cleanly using abundant coal reserves of the world to generate electricity. The present state-of-the-art synthesis gas (syngas) cleanup technologies in IGCC involve cooling the syngas from the gasifier to room temperature or lower for removing sulfur, carbon dioxide, and other pollutants, leading to a large efficiency loss. Here we assess the suitability of various alternative syngas cleanup technologies for IGCC with CCS through computational simulations. We model multicomponent gas separation for CO2 capture in IGCC using polymeric membranes and H2 separation from the syngas using both Pd-alloy based composite metallic membranes and polymeric membranes. In addition, we develop a pressure swing adsorption model to estimate the energy efficiency of regenerable sorbent beds for CO2 capture. We use our models with Aspen Plus simulations to identify promising design and operating conditions for membrane and adsorption processes in an IGCC plant. On the basis of our analysis, the benefits of warm gas cleanup are not as great as previously reported in the literature, and only CO2 separations performed using H2-permeable Pd-alloy membranes and CO2 adsorbents produce overall higher heating value (HHV) efficiencies higher than that of Selexol. In addition, many of the technologies surveyed require a narrow operating range of process parameters in order to be viable alternatives. We identify desired material properties of membranes and thermodynamic properties of sorbents that are needed to make these technologies successful, providing direction for ongoing experimental efforts to develop these materials. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24573329 [article] Analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined - Cycle power with CO2 capture and sequestration [texte imprimé] / David J. Couling, Auteur ; Kshitij Prakash, Auteur ; William H. Green, Auteur . - 2011 . - pp. 11313-11336.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 19 (Octobre 2011) . - pp. 11313-11336
Mots-clés : Carbon dioxide Gasification Synthesis gas Résumé : Integrated gasification combined cycle (IGCC) with CO2 capture and sequestration (CCS) offers a promising approach for cleanly using abundant coal reserves of the world to generate electricity. The present state-of-the-art synthesis gas (syngas) cleanup technologies in IGCC involve cooling the syngas from the gasifier to room temperature or lower for removing sulfur, carbon dioxide, and other pollutants, leading to a large efficiency loss. Here we assess the suitability of various alternative syngas cleanup technologies for IGCC with CCS through computational simulations. We model multicomponent gas separation for CO2 capture in IGCC using polymeric membranes and H2 separation from the syngas using both Pd-alloy based composite metallic membranes and polymeric membranes. In addition, we develop a pressure swing adsorption model to estimate the energy efficiency of regenerable sorbent beds for CO2 capture. We use our models with Aspen Plus simulations to identify promising design and operating conditions for membrane and adsorption processes in an IGCC plant. On the basis of our analysis, the benefits of warm gas cleanup are not as great as previously reported in the literature, and only CO2 separations performed using H2-permeable Pd-alloy membranes and CO2 adsorbents produce overall higher heating value (HHV) efficiencies higher than that of Selexol. In addition, many of the technologies surveyed require a narrow operating range of process parameters in order to be viable alternatives. We identify desired material properties of membranes and thermodynamic properties of sorbents that are needed to make these technologies successful, providing direction for ongoing experimental efforts to develop these materials. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24573329 Correction to “analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined - cycle power with CO2 capture and sequestration” / David J. Couling in Industrial & engineering chemistry research, Vol. 51 N° 35 (Septembre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 35 (Septembre 2012) . - pp. 11592–11592
Titre : Correction to “analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined - cycle power with CO2 capture and sequestration” Type de document : texte imprimé Auteurs : David J. Couling, Auteur ; Kshitij Prakash, Auteur ; William H. Green, Auteur Année de publication : 2012 Article en page(s) : pp. 11592–11592 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Correction Analysis membrane ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie302162y [article] Correction to “analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined - cycle power with CO2 capture and sequestration” [texte imprimé] / David J. Couling, Auteur ; Kshitij Prakash, Auteur ; William H. Green, Auteur . - 2012 . - pp. 11592–11592.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 35 (Septembre 2012) . - pp. 11592–11592
Mots-clés : Correction Analysis membrane ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie302162y