Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Donald E. Canfield
Documents disponibles écrits par cet auteur
Affiner la rechercheConnections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits / James Farquhar in Economic geology, Vol. 105 N° 3 (Mai 2010)
[article]
in Economic geology > Vol. 105 N° 3 (Mai 2010) . - pp. 509-533
Titre : Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits Type de document : texte imprimé Auteurs : James Farquhar, Auteur ; Nanping Wu, Auteur ; Donald E. Canfield, Auteur Année de publication : 2011 Article en page(s) : pp. 509-533 Note générale : Economic geology Langues : Anglais (eng) Mots-clés : Sulfure Isotopes Metal sulfide Ore deposits Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : Significant links exist between the sulfur cycle, sulfur geochemistry of sedimentary systems, and ore deposits over the course of Earth history. A picture emerges of an Archean and Paleoproterozoic stage of the sulfur cycle that has much lower levels of sulfate (<200 μM), carries a signal of mass-independent sulfur, and preserves evidence for temporal and spatial heterogeneity that reflects lower amounts of sulfur cycling than today. A second stage of ocean chemistry in the Paleoproterozoic, with higher atmospheric oxygen and oceanic sulfate at low millimolar levels, follows this stage. The isotopic record in sedimentary rocks and in sulfide-bearing ore deposits suggests abundant pyrite burial and implies a missing 34S-depleted pool that may have been lost via deep ocean deposition and possibly subduction. Proterozoic ocean chemistry appears to be quite complex. The surface waters of the Proterozoic oceans are believed to have been oxygenated, but geologic evidence from ore deposits and sedimentary rocks supports coexistence of significant sulfidic and nonsulfidic, anoxic, intermediate water and deep-water pools in the Mesoproterozoic. This stage in ocean chemistry ends with the second major global oxidation event in the latest Neoproterozoic (~600 Ma). This event started the transition to more oxygenated intermediate and deep waters, and higher but variable oceanic sulfate concentrations. The event set the scene for the formation in the Phanerozoic of the first significant MVT deposits and possibly is reflected in changes in other sedimentary rock-hosted base metal sulfide deposits. DEWEY : 553 ISSN : 0361-0128 En ligne : http://econgeol.geoscienceworld.org/content/105/3/509.abstract [article] Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits [texte imprimé] / James Farquhar, Auteur ; Nanping Wu, Auteur ; Donald E. Canfield, Auteur . - 2011 . - pp. 509-533.
Economic geology
Langues : Anglais (eng)
in Economic geology > Vol. 105 N° 3 (Mai 2010) . - pp. 509-533
Mots-clés : Sulfure Isotopes Metal sulfide Ore deposits Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : Significant links exist between the sulfur cycle, sulfur geochemistry of sedimentary systems, and ore deposits over the course of Earth history. A picture emerges of an Archean and Paleoproterozoic stage of the sulfur cycle that has much lower levels of sulfate (<200 μM), carries a signal of mass-independent sulfur, and preserves evidence for temporal and spatial heterogeneity that reflects lower amounts of sulfur cycling than today. A second stage of ocean chemistry in the Paleoproterozoic, with higher atmospheric oxygen and oceanic sulfate at low millimolar levels, follows this stage. The isotopic record in sedimentary rocks and in sulfide-bearing ore deposits suggests abundant pyrite burial and implies a missing 34S-depleted pool that may have been lost via deep ocean deposition and possibly subduction. Proterozoic ocean chemistry appears to be quite complex. The surface waters of the Proterozoic oceans are believed to have been oxygenated, but geologic evidence from ore deposits and sedimentary rocks supports coexistence of significant sulfidic and nonsulfidic, anoxic, intermediate water and deep-water pools in the Mesoproterozoic. This stage in ocean chemistry ends with the second major global oxidation event in the latest Neoproterozoic (~600 Ma). This event started the transition to more oxygenated intermediate and deep waters, and higher but variable oceanic sulfate concentrations. The event set the scene for the formation in the Phanerozoic of the first significant MVT deposits and possibly is reflected in changes in other sedimentary rock-hosted base metal sulfide deposits. DEWEY : 553 ISSN : 0361-0128 En ligne : http://econgeol.geoscienceworld.org/content/105/3/509.abstract