[article]
Titre : |
Secular variation of magmatic sulfide deposits and their source magmas |
Type de document : |
texte imprimé |
Auteurs : |
A. J. Naldrett, Auteur |
Année de publication : |
2011 |
Article en page(s) : |
pp. 669-688 |
Note générale : |
Economic geology |
Langues : |
Anglais (eng) |
Mots-clés : |
Magmatic sulfide deposits Magmas sources Komatiites |
Index. décimale : |
553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais |
Résumé : |
Magmatic sulfide deposits are divisible into two major groups, those that are valued primarily for their Ni and Cu and that are mostly sulfide rich (>10% sulfide), and those that are valued primarily for their PGE and tend to be sulfide poor (
Seventy-five percent of known PGE resources occur in three intrusions—the Bushveld, Great Dyke, and Stillwater, the rocks all of which have crystallized from two magma types, an unusual, high SiO2, MgO, and Cr and low Al2O3 type (U-type) that was emplaced at an early stage and a later, normal tholeiitic-type magma (T-type); the PGE are concentrated in layers close to the level at which the predominant crystallization switches from one magma type to the other. The U-type magma is interpreted as a PGE-rich, komatiitic magma (possibly the product of two-stage mantle melting) that has interacted to varying degrees with the crust, becoming SiO2 enriched in this way. These three intrusions are Neoarchean to Paleoproterozoic in age.
All known examples of komatiites, with one exception, are Paleoproterozoic or older and their secular distribution is thought to be due to cooling of the Earth. Known deposits do not occur in the oldest (>3.0 Ga) komatiites but appear at around 2.7Ga in continental (Kambalda, Western Australia) or island-arc (Perseverance-Mount Keith, Western Australia) environments, possibly because it was these environments that offered the opportunity for interaction with felsic rocks. It is suggested that the development of these environments in the Archean was an additional control on the age distribution of these deposits. It is postulated that the restricted secular distribution of PGE-enhanced intrusions is also due to the need for a hot mantle to give rise to U-type magmas. |
DEWEY : |
553 |
ISSN : |
0361-0128 |
En ligne : |
http://econgeol.geoscienceworld.org/content/105/3/669.abstract |
in Economic geology > Vol. 105 N° 3 (Mai 2010) . - pp. 669-688
[article] Secular variation of magmatic sulfide deposits and their source magmas [texte imprimé] / A. J. Naldrett, Auteur . - 2011 . - pp. 669-688. Economic geology Langues : Anglais ( eng) in Economic geology > Vol. 105 N° 3 (Mai 2010) . - pp. 669-688
Mots-clés : |
Magmatic sulfide deposits Magmas sources Komatiites |
Index. décimale : |
553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais |
Résumé : |
Magmatic sulfide deposits are divisible into two major groups, those that are valued primarily for their Ni and Cu and that are mostly sulfide rich (>10% sulfide), and those that are valued primarily for their PGE and tend to be sulfide poor (
Seventy-five percent of known PGE resources occur in three intrusions—the Bushveld, Great Dyke, and Stillwater, the rocks all of which have crystallized from two magma types, an unusual, high SiO2, MgO, and Cr and low Al2O3 type (U-type) that was emplaced at an early stage and a later, normal tholeiitic-type magma (T-type); the PGE are concentrated in layers close to the level at which the predominant crystallization switches from one magma type to the other. The U-type magma is interpreted as a PGE-rich, komatiitic magma (possibly the product of two-stage mantle melting) that has interacted to varying degrees with the crust, becoming SiO2 enriched in this way. These three intrusions are Neoarchean to Paleoproterozoic in age.
All known examples of komatiites, with one exception, are Paleoproterozoic or older and their secular distribution is thought to be due to cooling of the Earth. Known deposits do not occur in the oldest (>3.0 Ga) komatiites but appear at around 2.7Ga in continental (Kambalda, Western Australia) or island-arc (Perseverance-Mount Keith, Western Australia) environments, possibly because it was these environments that offered the opportunity for interaction with felsic rocks. It is suggested that the development of these environments in the Archean was an additional control on the age distribution of these deposits. It is postulated that the restricted secular distribution of PGE-enhanced intrusions is also due to the need for a hot mantle to give rise to U-type magmas. |
DEWEY : |
553 |
ISSN : |
0361-0128 |
En ligne : |
http://econgeol.geoscienceworld.org/content/105/3/669.abstract |
|