Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Patrick B. Redmond
Documents disponibles écrits par cet auteur
Affiner la rechercheThe Bingham canyon porphyry Cu-Mo-Au deposit. I. Sequence of intrusions, vein formation, and sulfide deposition / Patrick B. Redmond in Economic geology, Vol. 105 N° 1 (Janvier/Fevrier 2010)
[article]
in Economic geology > Vol. 105 N° 1 (Janvier/Fevrier 2010) . - pp. 43-68
Titre : The Bingham canyon porphyry Cu-Mo-Au deposit. I. Sequence of intrusions, vein formation, and sulfide deposition Type de document : texte imprimé Auteurs : Patrick B. Redmond, Auteur ; Marco T. Einaudi, Auteur Année de publication : 2011 Article en page(s) : pp. 43-68 Note générale : Economic geology Langues : Anglais (eng) Mots-clés : Cu-Mo-Au deposit Sulfide mineralization Igneous rocks Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : The Bingham Canyon porphyry copper-gold-molybdenum deposit is one of the largest and highest-grade porphyry orebodies in the world. This study focused on the northwest side of the deposit where quartz mon-zonite porphyry (QMP), the first and largest porphyry intrusion, hosts the bulk of the high-grade copper-gold ore (>1.0% Cu, >1.0 ppm Au). The north-northeast–trending, high-grade zone had pre-mining dimensions of 1,500 m strike, >300 m vertical, and 500 m width and contained more than 500 million tonnes (Mt) of ore associated with potassic alteration and abundant quartz veins. The lack of superimposed sericitic alteration yielded ideal exposures in which to study the early, high-temperature stages of ore formation, a style of mineralization that in many porphyry deposits represents the major period of copper introduction.
We mapped multiple porphyry dikes in the sequence: (1) QMP, (2) latite porphyry (LP), (3) biotite porphyry (BP), (4) quartz latite porphyry breccia (QLPbx), and (5) quartz latite porphyry (QLP). Porphyry dikes, faults, and quartz veins are steeply dipping and have two dominant orientations; north-northeast– and northwest-striking. Dikes have a north-northeast strike but they thicken and develop northwest-trending apophyses and host high-grade copper-gold zones at intersections with northwest-faults, indicating that magmatic-hydrothermal fluids were focused by these structural intersections.
Each porphyry intrusion was accompanied by a similar sequence of veins, potassic alteration, and sulfides. Biotite veinlets were followed by fractures with early dark micaceous (EDM) halos of sericite, K-feldspar, biotite, andalusite, and local corundum containing disseminated bornite-chalcopyrite-gold. EDM halos are cut by multiple generations of A-quartz veins representing the main Cu-Au ore-forming event. Postdating all intrusions are quartz-molybdenite veins followed by quartz-sericite-pyrite veins.
Cathodoluminescence (CL) petrography identified distinct A-quartz veinlets consisting of dark-luminescing quartz filling fractures and dissolution vugs in earlier A-quartz veins and adjacent porphyry wall rock. These veinlets contain abundant bornite and chalcopyrite and minor K-feldspar and are closely linked in time to the introduction of the bulk of the copper and gold. Although a similar sequence of veins was repeated on emplacement of all porphyry intrusions, the vein density and intensity of potassic alteration declined with time. The youngest porphyry, QLP, is mostly weakly mineralized and locally unaltered. These observations indicate that magmatic-hydrothermal fluids underwent a similar physiochemical evolution during and immediately following emplacement of each of several porphyry dikes. The relationship between EDM veins and A-quartz veins requires that the flux of magmatic fluid from the magma chamber occurred in an episodic manner as opposed to a continuous discharge.
Vein truncation relationships coupled with abrupt changes in copper-gold grades, sulfide ratios, and potassic alteration intensity at porphyry intrusive contacts indicate that the mass of introduced copper and gold decreased significantly during successive porphyry intrusive-hydrothermal cycles, presumably due to depletion of metals and volatiles in the underlying magma chamber.DEWEY : 553 ISSN : 0361-0128 En ligne : http://econgeol.geoscienceworld.org/content/105/1/43.abstract [article] The Bingham canyon porphyry Cu-Mo-Au deposit. I. Sequence of intrusions, vein formation, and sulfide deposition [texte imprimé] / Patrick B. Redmond, Auteur ; Marco T. Einaudi, Auteur . - 2011 . - pp. 43-68.
Economic geology
Langues : Anglais (eng)
in Economic geology > Vol. 105 N° 1 (Janvier/Fevrier 2010) . - pp. 43-68
Mots-clés : Cu-Mo-Au deposit Sulfide mineralization Igneous rocks Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : The Bingham Canyon porphyry copper-gold-molybdenum deposit is one of the largest and highest-grade porphyry orebodies in the world. This study focused on the northwest side of the deposit where quartz mon-zonite porphyry (QMP), the first and largest porphyry intrusion, hosts the bulk of the high-grade copper-gold ore (>1.0% Cu, >1.0 ppm Au). The north-northeast–trending, high-grade zone had pre-mining dimensions of 1,500 m strike, >300 m vertical, and 500 m width and contained more than 500 million tonnes (Mt) of ore associated with potassic alteration and abundant quartz veins. The lack of superimposed sericitic alteration yielded ideal exposures in which to study the early, high-temperature stages of ore formation, a style of mineralization that in many porphyry deposits represents the major period of copper introduction.
We mapped multiple porphyry dikes in the sequence: (1) QMP, (2) latite porphyry (LP), (3) biotite porphyry (BP), (4) quartz latite porphyry breccia (QLPbx), and (5) quartz latite porphyry (QLP). Porphyry dikes, faults, and quartz veins are steeply dipping and have two dominant orientations; north-northeast– and northwest-striking. Dikes have a north-northeast strike but they thicken and develop northwest-trending apophyses and host high-grade copper-gold zones at intersections with northwest-faults, indicating that magmatic-hydrothermal fluids were focused by these structural intersections.
Each porphyry intrusion was accompanied by a similar sequence of veins, potassic alteration, and sulfides. Biotite veinlets were followed by fractures with early dark micaceous (EDM) halos of sericite, K-feldspar, biotite, andalusite, and local corundum containing disseminated bornite-chalcopyrite-gold. EDM halos are cut by multiple generations of A-quartz veins representing the main Cu-Au ore-forming event. Postdating all intrusions are quartz-molybdenite veins followed by quartz-sericite-pyrite veins.
Cathodoluminescence (CL) petrography identified distinct A-quartz veinlets consisting of dark-luminescing quartz filling fractures and dissolution vugs in earlier A-quartz veins and adjacent porphyry wall rock. These veinlets contain abundant bornite and chalcopyrite and minor K-feldspar and are closely linked in time to the introduction of the bulk of the copper and gold. Although a similar sequence of veins was repeated on emplacement of all porphyry intrusions, the vein density and intensity of potassic alteration declined with time. The youngest porphyry, QLP, is mostly weakly mineralized and locally unaltered. These observations indicate that magmatic-hydrothermal fluids underwent a similar physiochemical evolution during and immediately following emplacement of each of several porphyry dikes. The relationship between EDM veins and A-quartz veins requires that the flux of magmatic fluid from the magma chamber occurred in an episodic manner as opposed to a continuous discharge.
Vein truncation relationships coupled with abrupt changes in copper-gold grades, sulfide ratios, and potassic alteration intensity at porphyry intrusive contacts indicate that the mass of introduced copper and gold decreased significantly during successive porphyry intrusive-hydrothermal cycles, presumably due to depletion of metals and volatiles in the underlying magma chamber.DEWEY : 553 ISSN : 0361-0128 En ligne : http://econgeol.geoscienceworld.org/content/105/1/43.abstract The Bingham canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion / Marianne R. Landtwing in Economic geology, Vol. 105 N° 1 (Janvier/Fevrier 2010)
[article]
in Economic geology > Vol. 105 N° 1 (Janvier/Fevrier 2010) . - pp. 91-118
Titre : The Bingham canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion Type de document : texte imprimé Auteurs : Marianne R. Landtwing, Auteur ; Caroline Furrer, Auteur ; Patrick B. Redmond, Auteur Année de publication : 2011 Article en page(s) : pp. 91-118 Note générale : Economic geology Langues : Anglais (eng) Mots-clés : Cu-Mo-Au deposit Gold deposit Magmatic vapor Fluid inclusion Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : Fluid inclusion microthermometry and laser-ablation ICPMS microanalysis are combined with geological and textural observations to reconstruct the spatial and temporal evolution of magmatic fluids that formed the subvolcanic porphyry Cu-Au(-Mo) ore deposit at Bingham Canyon, Utah. The Bingham Canyon orebody is exposed over ~1.6 km vertically and has the shape of an inverted cup with distinct metal zoning.
Fluid inclusions in the barren but highly veined and potassically altered deep center of the system have intermediate density (~0.6 g cm−3) and a salinity of ~7 wt percent NaCl equiv. They have subequal concentrations of Na, K, Fe, and Cu and contain minor CO2. The intermediate-density fluids were trapped as a single phase, mostly at >500°C and >800 bars. The Au-Cu-rich center near the top of the orebody contains low-density vapor inclusions (~0.2 g cm−3) coexisting with brine inclusions containing ~45 wt percent NaCl equiv. The vertical transition of different inclusion types indicates phase separation of the single-phase input fluid upon volume expansion associated with a pressure drop to 200 ± 100 bars. Mass-balance calculation based on all analyzed inclusion components indicates that the mass of the vapor phase exceeded that of the brine by ~9/1. The vapor contained Cu as its dominant cation (~1.5 wt %) and contributed about 95 percent of the total amount of copper transported to the base of the orebody. Bornite, chalcopyrite, and native gold were precipitated in a narrow temperature interval from 430° to 350°C, into secondary pore space created by local redissolution of vein quartz as a result of retrograde quartz solubility in the vapor-dominated fluid system.
Intermediate-density fluid inclusions in the deepest parts of the peripheral copper ore zone have identical density and composition, including similar gold contents, as those in the deep center. Microthermometry and statistical estimation of phase proportions in the inclusions show that the vapor in the peripheral Cu-rich but Au-poor ore zone remained denser, and the separating brine was less saline (~36 wt % NaCl equiv), compared to vapor and brine in the central Au-Cu ore zone. This indicates that the peripheral fluids experienced a lower degree of phase separation, due to slightly higher fluid pressure at equivalent temperature, compared to more strongly expanding fluids in the center of the system.
The systematic zoning of Au/Cu within the ore shell, despite compositionally similar input fluids, is interpreted to have resulted from slightly different pressure-temperature-density evolution paths of magmatic fluids. Copper was selectively precipitated in the peripheral ore zone, in contrast to complete coprecipitation of Au and Cu in the central upflow zone of the vapor plume. The formation of particularly rich Cu-Au ore in the center of the upward-expanding fluid plume is consistent with published experimental data, showing that the solubility of metals in hydrous vapor decreases sharply with falling pressure, due to destabilization of the hydration shell around metal complexes in expanding vapor. This interpretation supports the classic vapor plume model for porphyry copper ore formation but additionally emphasizes the role of sulfur-bearing complexes as a key chemical control on magmatic-hydrothermal metal transport and the deposition of Cu and Au in porphyry ores. Our interpretation of selective Cu ± Au precipitation as a function of vapor density can explain the more general observation that most gold-rich porphyry copper deposits are formed in shallow sub-volcanic environments, whereas deeper seated porphyry Cu-(Mo) deposits are generally gold poor.DEWEY : 553 ISSN : 0361-0128 En ligne : http://econgeol.geoscienceworld.org/content/105/1/91.abstract [article] The Bingham canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion [texte imprimé] / Marianne R. Landtwing, Auteur ; Caroline Furrer, Auteur ; Patrick B. Redmond, Auteur . - 2011 . - pp. 91-118.
Economic geology
Langues : Anglais (eng)
in Economic geology > Vol. 105 N° 1 (Janvier/Fevrier 2010) . - pp. 91-118
Mots-clés : Cu-Mo-Au deposit Gold deposit Magmatic vapor Fluid inclusion Index. décimale : 553 Géologie économique. Minérographie. Minéraux. Formation et gisements de minerais Résumé : Fluid inclusion microthermometry and laser-ablation ICPMS microanalysis are combined with geological and textural observations to reconstruct the spatial and temporal evolution of magmatic fluids that formed the subvolcanic porphyry Cu-Au(-Mo) ore deposit at Bingham Canyon, Utah. The Bingham Canyon orebody is exposed over ~1.6 km vertically and has the shape of an inverted cup with distinct metal zoning.
Fluid inclusions in the barren but highly veined and potassically altered deep center of the system have intermediate density (~0.6 g cm−3) and a salinity of ~7 wt percent NaCl equiv. They have subequal concentrations of Na, K, Fe, and Cu and contain minor CO2. The intermediate-density fluids were trapped as a single phase, mostly at >500°C and >800 bars. The Au-Cu-rich center near the top of the orebody contains low-density vapor inclusions (~0.2 g cm−3) coexisting with brine inclusions containing ~45 wt percent NaCl equiv. The vertical transition of different inclusion types indicates phase separation of the single-phase input fluid upon volume expansion associated with a pressure drop to 200 ± 100 bars. Mass-balance calculation based on all analyzed inclusion components indicates that the mass of the vapor phase exceeded that of the brine by ~9/1. The vapor contained Cu as its dominant cation (~1.5 wt %) and contributed about 95 percent of the total amount of copper transported to the base of the orebody. Bornite, chalcopyrite, and native gold were precipitated in a narrow temperature interval from 430° to 350°C, into secondary pore space created by local redissolution of vein quartz as a result of retrograde quartz solubility in the vapor-dominated fluid system.
Intermediate-density fluid inclusions in the deepest parts of the peripheral copper ore zone have identical density and composition, including similar gold contents, as those in the deep center. Microthermometry and statistical estimation of phase proportions in the inclusions show that the vapor in the peripheral Cu-rich but Au-poor ore zone remained denser, and the separating brine was less saline (~36 wt % NaCl equiv), compared to vapor and brine in the central Au-Cu ore zone. This indicates that the peripheral fluids experienced a lower degree of phase separation, due to slightly higher fluid pressure at equivalent temperature, compared to more strongly expanding fluids in the center of the system.
The systematic zoning of Au/Cu within the ore shell, despite compositionally similar input fluids, is interpreted to have resulted from slightly different pressure-temperature-density evolution paths of magmatic fluids. Copper was selectively precipitated in the peripheral ore zone, in contrast to complete coprecipitation of Au and Cu in the central upflow zone of the vapor plume. The formation of particularly rich Cu-Au ore in the center of the upward-expanding fluid plume is consistent with published experimental data, showing that the solubility of metals in hydrous vapor decreases sharply with falling pressure, due to destabilization of the hydration shell around metal complexes in expanding vapor. This interpretation supports the classic vapor plume model for porphyry copper ore formation but additionally emphasizes the role of sulfur-bearing complexes as a key chemical control on magmatic-hydrothermal metal transport and the deposition of Cu and Au in porphyry ores. Our interpretation of selective Cu ± Au precipitation as a function of vapor density can explain the more general observation that most gold-rich porphyry copper deposits are formed in shallow sub-volcanic environments, whereas deeper seated porphyry Cu-(Mo) deposits are generally gold poor.DEWEY : 553 ISSN : 0361-0128 En ligne : http://econgeol.geoscienceworld.org/content/105/1/91.abstract