Détail de l'auteur
Auteur Moran Wang |
Documents disponibles écrits par cet auteur (2)



Electrospun nanomaterials for ultrasensitive sensors / Bin Ding in Materials today, Vol. 13 N° 11 (Novembre 2010)
![]()
[article]
Titre : Electrospun nanomaterials for ultrasensitive sensors Type de document : texte imprimé Auteurs : Bin Ding, Auteur ; Moran Wang, Auteur ; Xianfeng Wang, Auteur Année de publication : 2011 Article en page(s) : pp. 16-27 Note générale : Ingénierie Langues : Anglais (eng) Mots-clés : Nanofibers Nanowebs Nanomaterials Ultrasensitive sensors Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : Increasing demands for ever more sensitive sensors for global environmental monitoring, food inspection and medical diagnostics have led to an upsurge of interests in nanostructured materials such as nanofibers and nanowebs. Electrospinning exhibits the unique ability to produce diverse forms of fibrous assemblies. The remarkable specific surface area and high porosity bring electrospun nanomaterials highly attractive to ultrasensitive sensors and increasing importance in other nanotechnological applications. In this review, we summarize recent progress in developments of the electrospun nanomaterials with applications in some predominant sensing approaches such as acoustic wave, resistive, photoelectric, optical, amperometric, and so on, illustrate with examples how they work, and discuss their intrinsic fundamentals and optimization designs. We are expecting the review to pave the way for developing more sensitive and selective nanosensors.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S1369702110702005
in Materials today > Vol. 13 N° 11 (Novembre 2010) . - pp. 16-27[article] Electrospun nanomaterials for ultrasensitive sensors [texte imprimé] / Bin Ding, Auteur ; Moran Wang, Auteur ; Xianfeng Wang, Auteur . - 2011 . - pp. 16-27.
Ingénierie
Langues : Anglais (eng)
in Materials today > Vol. 13 N° 11 (Novembre 2010) . - pp. 16-27
Mots-clés : Nanofibers Nanowebs Nanomaterials Ultrasensitive sensors Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : Increasing demands for ever more sensitive sensors for global environmental monitoring, food inspection and medical diagnostics have led to an upsurge of interests in nanostructured materials such as nanofibers and nanowebs. Electrospinning exhibits the unique ability to produce diverse forms of fibrous assemblies. The remarkable specific surface area and high porosity bring electrospun nanomaterials highly attractive to ultrasensitive sensors and increasing importance in other nanotechnological applications. In this review, we summarize recent progress in developments of the electrospun nanomaterials with applications in some predominant sensing approaches such as acoustic wave, resistive, photoelectric, optical, amperometric, and so on, illustrate with examples how they work, and discuss their intrinsic fundamentals and optimization designs. We are expecting the review to pave the way for developing more sensitive and selective nanosensors.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S1369702110702005 Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Structure effects on electro-osmosis in microporous media / Moran Wang in Journal of heat transfer, Vol. 134 N° 5 (Mai 2012)
![]()
[article]
Titre : Structure effects on electro-osmosis in microporous media Type de document : texte imprimé Auteurs : Moran Wang, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : heat transfer Langues : Anglais (eng) Mots-clés : electro-osmosis porous media multiphysical transport lattice Boltzmann environment and energy Index. décimale : 536 Chaleur. Thermodynamique Résumé : The structure effects on electro-osmosis in microporous media have been studied by modeling the multiphysical transport using our numerical framework. The three-dimensional microstructures of porous media are reproduced by a random generation-growth method, and then the nonlinear governing equations for the electrokinetic transport are solved by a highly efficient lattice Poisson–Boltzmann method. The simulation results indicate that the porous structure type (granular, fibrous, or network) influences the electro-osmotic permeability significantly. At the low porosity regime (0.5), the granular structure leads to the highest electro-osmotic permeability due to its lower shape resistance characteristics. The present modeling results improve our understanding of hydrodynamic and electrokinetic transport in geophysical systems, and help guide the design of porous electrodes in micro-energy systems. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...]
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 06 p.[article] Structure effects on electro-osmosis in microporous media [texte imprimé] / Moran Wang, Auteur . - 2012 . - 06 p.
heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 06 p.
Mots-clés : electro-osmosis porous media multiphysical transport lattice Boltzmann environment and energy Index. décimale : 536 Chaleur. Thermodynamique Résumé : The structure effects on electro-osmosis in microporous media have been studied by modeling the multiphysical transport using our numerical framework. The three-dimensional microstructures of porous media are reproduced by a random generation-growth method, and then the nonlinear governing equations for the electrokinetic transport are solved by a highly efficient lattice Poisson–Boltzmann method. The simulation results indicate that the porous structure type (granular, fibrous, or network) influences the electro-osmotic permeability significantly. At the low porosity regime (0.5), the granular structure leads to the highest electro-osmotic permeability due to its lower shape resistance characteristics. The present modeling results improve our understanding of hydrodynamic and electrokinetic transport in geophysical systems, and help guide the design of porous electrodes in micro-energy systems. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...] Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire