Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Gui-Mei Yang
Documents disponibles écrits par cet auteur
Affiner la rechercheElectrical nanogap devices for biosensing / Xing Chen in Materials today, Vol. 13 N° 11 (Novembre 2010)
[article]
in Materials today > Vol. 13 N° 11 (Novembre 2010) . - pp. 28-41
Titre : Electrical nanogap devices for biosensing Type de document : texte imprimé Auteurs : Xing Chen, Auteur ; Zheng Guo, Auteur ; Gui-Mei Yang, Auteur Année de publication : 2011 Article en page(s) : pp. 28-41 Note générale : Ingénierie Langues : Anglais (eng) Mots-clés : Electrical nanogap Biomolecules Electrical biosensing Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : For detecting substances that are invisible to the human eye or nose, and particularly those biomolecules, the devices must have very small feature sizes, be compact and provide a sufficient level of sensitivity, often to a small number of biomolecules that are just a few nanometres in size. Electrical nanogap devices for biosensing have emerged as a powerful technique for detecting very small quantities of biomolecules. The most charming feature of the devices is to directly transduce events of biomolecules specific binding into useful electrical signals such as resistance/impedance, capacitance/dielectric, or field-effect. Nanogap devices in electrical biosensing have become a busy area of research which is continually expanding. A wealth of research is available discussing planar and vertical nanogap devices for biosensing. Planar nanogap devices including label-free, gold nanoparticle-labeled, nanoparticles-enhanced, nanogapped gold particle film, and carbon nanotube nanogap devices as well as vertical nanogap devices with two and three terminals for biosensing are carefully reviewed. The aim of this paper is to provide an updated overview of the work in this field. In each part, we discuss the principles of operation of electrical biosensing and consider major strategies for enhancing their performance and/or key challenges and opportunities in current stages, and in their further development.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S1369702110702017 [article] Electrical nanogap devices for biosensing [texte imprimé] / Xing Chen, Auteur ; Zheng Guo, Auteur ; Gui-Mei Yang, Auteur . - 2011 . - pp. 28-41.
Ingénierie
Langues : Anglais (eng)
in Materials today > Vol. 13 N° 11 (Novembre 2010) . - pp. 28-41
Mots-clés : Electrical nanogap Biomolecules Electrical biosensing Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : For detecting substances that are invisible to the human eye or nose, and particularly those biomolecules, the devices must have very small feature sizes, be compact and provide a sufficient level of sensitivity, often to a small number of biomolecules that are just a few nanometres in size. Electrical nanogap devices for biosensing have emerged as a powerful technique for detecting very small quantities of biomolecules. The most charming feature of the devices is to directly transduce events of biomolecules specific binding into useful electrical signals such as resistance/impedance, capacitance/dielectric, or field-effect. Nanogap devices in electrical biosensing have become a busy area of research which is continually expanding. A wealth of research is available discussing planar and vertical nanogap devices for biosensing. Planar nanogap devices including label-free, gold nanoparticle-labeled, nanoparticles-enhanced, nanogapped gold particle film, and carbon nanotube nanogap devices as well as vertical nanogap devices with two and three terminals for biosensing are carefully reviewed. The aim of this paper is to provide an updated overview of the work in this field. In each part, we discuss the principles of operation of electrical biosensing and consider major strategies for enhancing their performance and/or key challenges and opportunities in current stages, and in their further development.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S1369702110702017