Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Wonjoon Choi
Documents disponibles écrits par cet auteur
Affiner la rechercheCarbon nanotube-guided thermopower waves / Wonjoon Choi in Materials today, Vol. 13 N° 10 (Octobre 2010)
[article]
in Materials today > Vol. 13 N° 10 (Octobre 2010) . - pp. 22-23
Titre : Carbon nanotube-guided thermopower waves Type de document : texte imprimé Auteurs : Wonjoon Choi, Auteur ; Joel T. Abrahamson, Auteur ; Jennifer M. Strano, Auteur Année de publication : 2011 Article en page(s) : pp. 22-23 Note générale : Ingénierie Langues : Anglais (eng) Mots-clés : Carbon Nanotube Thermopower wav Electrical energyes Nanowire Nanomaterials Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : Thermopower waves are a new concept for the direct conversion of chemical to electrical energy. A nanowire with large axial thermal diffusivity can accelerate a self-propagating reaction wave using a fuel coated along its length. The reaction wave drives electrical carriers in a thermopower wave, creating a high-power pulse of as much as 7 kW/kg in experiments using carbon nanotubes. We review nanomaterials designed to overcome limitations of thermoelectricity and explore the emerging scientific and practical outlook for devices using thermopower waves.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S1369702110701838 [article] Carbon nanotube-guided thermopower waves [texte imprimé] / Wonjoon Choi, Auteur ; Joel T. Abrahamson, Auteur ; Jennifer M. Strano, Auteur . - 2011 . - pp. 22-23.
Ingénierie
Langues : Anglais (eng)
in Materials today > Vol. 13 N° 10 (Octobre 2010) . - pp. 22-23
Mots-clés : Carbon Nanotube Thermopower wav Electrical energyes Nanowire Nanomaterials Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : Thermopower waves are a new concept for the direct conversion of chemical to electrical energy. A nanowire with large axial thermal diffusivity can accelerate a self-propagating reaction wave using a fuel coated along its length. The reaction wave drives electrical carriers in a thermopower wave, creating a high-power pulse of as much as 7 kW/kg in experiments using carbon nanotubes. We review nanomaterials designed to overcome limitations of thermoelectricity and explore the emerging scientific and practical outlook for devices using thermopower waves.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S1369702110701838 Rapid electromechanical transduction on a single-walled carbon nanotube film / Wonjoon Choi in Industrial & engineering chemistry research, Vol. 51 N° 45 (Novembre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 45 (Novembre 2012) . - pp. 14714-14721
Titre : Rapid electromechanical transduction on a single-walled carbon nanotube film : Sensing fast mechanical loading via detection of electrical signal change Type de document : texte imprimé Auteurs : Wonjoon Choi, Auteur ; Jinkee Hong, Auteur Année de publication : 2013 Article en page(s) : pp. 14714-14721 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Loading Carbon Nanotube Résumé : Carbon nanotubes (CNTs) have been widely explored as next generation embedded-strain-pressure sensors. However, most investigations of CNT sensors did not consider the response time as a critical factor, although the ultrafast sensing of mechanical deformation is very important for the detection of dynamic loading or impact, such as in reactive armor systems. Owing to the low capacitance that shortens the response time of the electrical resistance changes induced by mechanical deformation, CNTs are expected to detect rapid electromechanical transduction without delay. Herein, we fabricate single-walled carbon nanotube (SWNT) films on diverse substrates, and evaluate their applications as sensors to detect rapid electromechanical transduction on a macroscopic scale. Under repetitive, high-speed mechanical loading, the SWNT films generate consistent electrical signal changes, which are accurately synchronized with their strain and the beginning of the deformation. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301551a [article] Rapid electromechanical transduction on a single-walled carbon nanotube film : Sensing fast mechanical loading via detection of electrical signal change [texte imprimé] / Wonjoon Choi, Auteur ; Jinkee Hong, Auteur . - 2013 . - pp. 14714-14721.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 45 (Novembre 2012) . - pp. 14714-14721
Mots-clés : Loading Carbon Nanotube Résumé : Carbon nanotubes (CNTs) have been widely explored as next generation embedded-strain-pressure sensors. However, most investigations of CNT sensors did not consider the response time as a critical factor, although the ultrafast sensing of mechanical deformation is very important for the detection of dynamic loading or impact, such as in reactive armor systems. Owing to the low capacitance that shortens the response time of the electrical resistance changes induced by mechanical deformation, CNTs are expected to detect rapid electromechanical transduction without delay. Herein, we fabricate single-walled carbon nanotube (SWNT) films on diverse substrates, and evaluate their applications as sensors to detect rapid electromechanical transduction on a macroscopic scale. Under repetitive, high-speed mechanical loading, the SWNT films generate consistent electrical signal changes, which are accurately synchronized with their strain and the beginning of the deformation. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301551a