Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur James C. Weaver
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalysis of an ultra hard magnetic biomineral in chiton radular teeth / James C. Weaver in Materials today, Vol. 13 N° 1-2 (Janvier/Fevrier 2010)
[article]
in Materials today > Vol. 13 N° 1-2 (Janvier/Fevrier 2010) . - pp. 42–52
Titre : Analysis of an ultra hard magnetic biomineral in chiton radular teeth Type de document : texte imprimé Auteurs : James C. Weaver, Auteur ; Qianqian Wang, Auteur ; Ali Miserez, Auteur Année de publication : 2010 Article en page(s) : pp. 42–52 Note générale : Ingénierie Langues : Anglais (eng) Mots-clés : Mineralized biological materials Anisotropic crystal nucleation Chiton radular Biominerals Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : Recent analyses of the ultrastructural and mechanical properties of mineralized biological materials have demonstrated some common architectural features that can help explain their observed damage tolerance. Nature has accomplished this feat through the precise control of anisotropic crystal nucleation and growth processes in conjunction with nanoscale control over the self-assembly of spatially distinct organic and inorganic phases, resulting in effective inhibition of crack propagation through these materials. One such example is found in the hyper-mineralized and abrasion resistant radular teeth of the chitons, a group of herbivorous marine mollusks who have the surprising capacity to erode away the rocky substrates on which they graze [1], [2], [3] and [4]. Through the use of modern microscopy and nanomechanical characterization techniques, we describe the architectural and mechanical properties of the radular teeth from Cryptochiton stelleri. Chiton teeth are shown to exhibit the largest hardness and stiffness of any biominerals reported to date, being notably as much as three-fold harder than human enamel and the calcium carbonate-based shells of mollusks. We explain how the unique multi-phasic design of these materials contributes not only to their functionality, but also highlights some interesting design principles that might be applied to the fabrication of synthetic composites.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S136970211070016X [article] Analysis of an ultra hard magnetic biomineral in chiton radular teeth [texte imprimé] / James C. Weaver, Auteur ; Qianqian Wang, Auteur ; Ali Miserez, Auteur . - 2010 . - pp. 42–52.
Ingénierie
Langues : Anglais (eng)
in Materials today > Vol. 13 N° 1-2 (Janvier/Fevrier 2010) . - pp. 42–52
Mots-clés : Mineralized biological materials Anisotropic crystal nucleation Chiton radular Biominerals Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : Recent analyses of the ultrastructural and mechanical properties of mineralized biological materials have demonstrated some common architectural features that can help explain their observed damage tolerance. Nature has accomplished this feat through the precise control of anisotropic crystal nucleation and growth processes in conjunction with nanoscale control over the self-assembly of spatially distinct organic and inorganic phases, resulting in effective inhibition of crack propagation through these materials. One such example is found in the hyper-mineralized and abrasion resistant radular teeth of the chitons, a group of herbivorous marine mollusks who have the surprising capacity to erode away the rocky substrates on which they graze [1], [2], [3] and [4]. Through the use of modern microscopy and nanomechanical characterization techniques, we describe the architectural and mechanical properties of the radular teeth from Cryptochiton stelleri. Chiton teeth are shown to exhibit the largest hardness and stiffness of any biominerals reported to date, being notably as much as three-fold harder than human enamel and the calcium carbonate-based shells of mollusks. We explain how the unique multi-phasic design of these materials contributes not only to their functionality, but also highlights some interesting design principles that might be applied to the fabrication of synthetic composites.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S136970211070016X Wide-field SEM of semiconducting minerals / James C. Weaver in Materials today, Vol. 13 N° 10 (Octobre 2010)
[article]
in Materials today > Vol. 13 N° 10 (Octobre 2010) . - pp. 46-53
Titre : Wide-field SEM of semiconducting minerals Type de document : texte imprimé Auteurs : James C. Weaver, Auteur ; William Mershon, Auteur ; Martin Zadrazil, Auteur Année de publication : 2011 Article en page(s) : pp. 46-53 Note générale : Ingénierie Langues : Anglais (eng) Mots-clés : Semiconducting minerals Electron microscopes Nanotechnology Imaging Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : There has been significant progress in recent years aimed at pushing the spatial resolution limits of scanning electron microscopes. Many of these endeavours have been driven by advances in the field of nanotechnology and the need to investigate the morphological features of sub-micron size materials. While scanning electron microscopy is indeed a powerful tool for investigating objects at length-scales that are prohibitive using standard optical microscopy techniques, SEMs are equally useful in characterizing the micro- and macro-scale architectures of transparent, highly reflective, or morphologically complex materials. Despite this great potential, until recently, the maximum feature sizes that could be successfully imaged in a scanning electron microscope were on the order of a few millimeters and the thought of routinely imaging objects on the order of 10s of centimeters in a single dimension, in a single image seemed unimaginable. New advances in SEM column design, however, are beginning to change all of this.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S1369702110701863 [article] Wide-field SEM of semiconducting minerals [texte imprimé] / James C. Weaver, Auteur ; William Mershon, Auteur ; Martin Zadrazil, Auteur . - 2011 . - pp. 46-53.
Ingénierie
Langues : Anglais (eng)
in Materials today > Vol. 13 N° 10 (Octobre 2010) . - pp. 46-53
Mots-clés : Semiconducting minerals Electron microscopes Nanotechnology Imaging Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : There has been significant progress in recent years aimed at pushing the spatial resolution limits of scanning electron microscopes. Many of these endeavours have been driven by advances in the field of nanotechnology and the need to investigate the morphological features of sub-micron size materials. While scanning electron microscopy is indeed a powerful tool for investigating objects at length-scales that are prohibitive using standard optical microscopy techniques, SEMs are equally useful in characterizing the micro- and macro-scale architectures of transparent, highly reflective, or morphologically complex materials. Despite this great potential, until recently, the maximum feature sizes that could be successfully imaged in a scanning electron microscope were on the order of a few millimeters and the thought of routinely imaging objects on the order of 10s of centimeters in a single dimension, in a single image seemed unimaginable. New advances in SEM column design, however, are beginning to change all of this.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S1369702110701863