Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Guozheng Shao
Documents disponibles écrits par cet auteur
Affiner la rechercheNew SPM techniques for analyzing OPV materials / Rajiv Giridharagopal in Materials today, Vol. 13 N° 9 (Septembre 2010)
[article]
in Materials today > Vol. 13 N° 9 (Septembre 2010) . - pp. 50–56
Titre : New SPM techniques for analyzing OPV materials Type de document : texte imprimé Auteurs : Rajiv Giridharagopal, Auteur ; Guozheng Shao, Auteur ; Chris Groves, Auteur Année de publication : 2011 Article en page(s) : pp. 50–56 Note générale : Ingénierie Langues : Anglais (eng) Mots-clés : OPV materials Solar energy Microscopy Nanoscale basis Heterogeneity of OPV Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : Organic solar cells hold promise as an economical means of harvesting solar energy due to their ease of production and processing. However, the efficiency of such organic photovoltaic (OPV) devices is currently below that required for widespread adoption. The efficiency of an OPV is inextricably linked to its nanoscale morphology. High-resolution metrology can play a key role in the discovery and optimization of new organic semiconductors in the lab, as well as assist the transition of OPVs from the lab to mass production. We review the instrumental issues associated with the application of scanning probe microscopy (SPM) techniques such as photoconductive atomic force microscopy and time-resolved electrostatic force microscopy that have been shown to be useful in the study of nanostructured organic solar cells. These techniques offer unique insight into the underlying heterogeneity of OPV devices and provide a nanoscale basis for understanding how morphology directly affects OPV operation. Finally, we discuss opportunities for further improvements in scanning probe microscopy to contribute to OPV development.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S1369702110701656 [article] New SPM techniques for analyzing OPV materials [texte imprimé] / Rajiv Giridharagopal, Auteur ; Guozheng Shao, Auteur ; Chris Groves, Auteur . - 2011 . - pp. 50–56.
Ingénierie
Langues : Anglais (eng)
in Materials today > Vol. 13 N° 9 (Septembre 2010) . - pp. 50–56
Mots-clés : OPV materials Solar energy Microscopy Nanoscale basis Heterogeneity of OPV Index. décimale : 620 Essais des matériaux. Matériaux commerciaux. Station génératrice d'énergie. Economie de l'énergie Résumé : Organic solar cells hold promise as an economical means of harvesting solar energy due to their ease of production and processing. However, the efficiency of such organic photovoltaic (OPV) devices is currently below that required for widespread adoption. The efficiency of an OPV is inextricably linked to its nanoscale morphology. High-resolution metrology can play a key role in the discovery and optimization of new organic semiconductors in the lab, as well as assist the transition of OPVs from the lab to mass production. We review the instrumental issues associated with the application of scanning probe microscopy (SPM) techniques such as photoconductive atomic force microscopy and time-resolved electrostatic force microscopy that have been shown to be useful in the study of nanostructured organic solar cells. These techniques offer unique insight into the underlying heterogeneity of OPV devices and provide a nanoscale basis for understanding how morphology directly affects OPV operation. Finally, we discuss opportunities for further improvements in scanning probe microscopy to contribute to OPV development.
DEWEY : 620 ISSN : 1369-7021 En ligne : http://www.sciencedirect.com/science/article/pii/S1369702110701656