Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Aaron W. Thornton
Documents disponibles écrits par cet auteur
Affiner la rechercheVacancy diffusion with time - dependent length scale / Aaron W. Thornton in Industrial & engineering chemistry research, Vol. 49 N° 23 (Décembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 23 (Décembre 2010) . - pp. 12119–12124
Titre : Vacancy diffusion with time - dependent length scale : an insightful new model for physical aging in polymers Type de document : texte imprimé Auteurs : Aaron W. Thornton, Auteur ; Anita J. Hill, Auteur Année de publication : 2011 Article en page(s) : pp. 12119–12124 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Polymers Résumé : Physical aging models are reviewed and further developed to describe the physical aging within thin (>100 nm) and ultrathin polymer films (<100 nm). The phenomenological models of Kovacs et al. and Struik have the adaptability necessary to follow thin film aging trends while the fundamental models of Curro et al., based on the aging mechanism of vacancy diffusion, provide more physical insight into the aging phenomenon at the nanoscale. It is found that a newly formulated diffusion model which includes time-dependent length scale can describe the glassy-state dynamics that result in physical aging. Lattice contraction is found to be a direct result of vacancy diffusion and is not a separate phenomenon. The new model predicts the change in permeability due to physical aging for ultrathin and thin films. The model’s use of a time-dependent length scale holds promise for renewed examination of complex dynamics in glassy polymers such as the role of α and β relaxations and the nature of the glass transition. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100696t [article] Vacancy diffusion with time - dependent length scale : an insightful new model for physical aging in polymers [texte imprimé] / Aaron W. Thornton, Auteur ; Anita J. Hill, Auteur . - 2011 . - pp. 12119–12124.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 23 (Décembre 2010) . - pp. 12119–12124
Mots-clés : Polymers Résumé : Physical aging models are reviewed and further developed to describe the physical aging within thin (>100 nm) and ultrathin polymer films (<100 nm). The phenomenological models of Kovacs et al. and Struik have the adaptability necessary to follow thin film aging trends while the fundamental models of Curro et al., based on the aging mechanism of vacancy diffusion, provide more physical insight into the aging phenomenon at the nanoscale. It is found that a newly formulated diffusion model which includes time-dependent length scale can describe the glassy-state dynamics that result in physical aging. Lattice contraction is found to be a direct result of vacancy diffusion and is not a separate phenomenon. The new model predicts the change in permeability due to physical aging for ultrathin and thin films. The model’s use of a time-dependent length scale holds promise for renewed examination of complex dynamics in glassy polymers such as the role of α and β relaxations and the nature of the glass transition. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100696t