[article] in Techniques de l'ingénieur E > Vol. E2 (Trimestriel) . - 19 p. Titre : | Transistors et circuits intégrés à hétérostructures (III-V) | Type de document : | texte imprimé | Auteurs : | Scavennec, André, Auteur ; Delage, Sylvain, Auteur | Année de publication : | 2007 | Article en page(s) : | 19 p. | Note générale : | Bibliogr. | Langues : | Français (fre) | Mots-clés : | Transistors Circuits intégrés Hétérostructures | Résumé : | Le comportement des composants électroniques à semi-conducteurs est largement conditionné par la nature des interfaces ou jonctions qui en séparent les différentes parties constitutives (métalliques, diélectriques ou semi-conductrices) et par la façon dont les porteurs, électrons ou trous, longent ou traversent ces interfaces. Les jonctions semi-conducteur/semi-conducteur intervenant dans les composants et circuits, à base de transistors à effet de champ ou de transistors bipolaires, qui ont dominé jusqu'à la fin des années 1980 la microélectronique, ont longtemps été des homojonctions séparant deux régions de dopages différents d'un même semi-conducteur hôte. En pratique, ce dernier est généralement du silicium (filières NMOS, CMOS bipolaires et BiCMOS) et très rarement de l'arséniure de gallium (filière MESFET GaAs).
Au cours des années 1980, des progrès constants en matière d'élaboration des matériaux, de technologie de fabrication et de physique des structures semi-conductrices complexes ont favorisé l'émergence d'une nouvelle génération de composants microélectroniques dits à hétérojonction. Ces hétérojonctions sont des jonctions où se trouvent juxtaposés deux semi-conducteurs différents. Elles sont le plus souvent en accord ou quasi-accord de maille cristalline [cas des jonctions GaAlAs/GaAs des transistors à hétérojonction à effet de champ, appelés HEMT, et des transistors bipolaires à hétérojonction, dits HBT (§ 2.1 et 4.1)]. Mais ces hétérojonctions peuvent être aussi en léger désaccord de maille (de l'ordre de 1 % comme dans le cas des jonctions GaAlN/GaN des HEMT GaN (§ 3.1) ou Ga0,8 In0,2 As/GaAs des HEMT GaAs dits pseudomorphiques (§ 2.4.1), voire en désaccord plus important, au-delà de ce que peut supporter l'élasticité limitée du réseau cristallin, et impliquant alors des zones cristallines très disloquées [cas des structures dites métamorphiques InP/GaAs (§ 2.4.3) ainsi que des hétérostructures à base de nitrure de gallium (§ 3.1), où les différences de dimensions de mailles cristallines sont de l'ordre de quelques pour-cent entre le substrat de départ et le matériau qui constitue le cœur actif du composant].
Dans tous les cas, cette possibilité de combiner, au sein d'un même composant, des semi-conducteurs de structures de bandes d'énergie différentes apporte des degrés de liberté supplémentaires permettant de développer des composants nouveaux à performances améliorées ou à fonctionnalité originale. En effet, en sus des champs appliqués et des gradients de dopage assurant le contrôle du transport des électrons et des trous dans les composants ordinaires à homostructure semi-conductrice, le fait de pouvoir faire varier l'énergie de bande interdite dans le cas d'une hétérojonction permet des variations spatiales brutales des potentiels et des champs [cf. le puits de potentiel du HEMT utilisé pour séparer porteurs et donneurs (§ 2.1)]. De plus ces variations peuvent être différentes pour les électrons et pour les trous, introduisant ainsi une sorte de filtrage dans le transport de ces deux types de porteurs (cf. l'interface émetteur-base du HBT, § 4.1). L'exploitation de ces degrés de liberté, souvent qualifiée d'ingénierie de bande interdite, a donné lieu à un foisonnement d'innovations, tant en optoélectronique qu'en microélectronique, et ce plus particulièrement dans le cas des matériaux III-V, grâce à la richesse des combinaisons possibles d'éléments III et V, et pour bénéficier de la gamme très étendue des propriétés de transport de ces matériaux. | REFERENCE : | E 2 450v2 | DEWEY : | 621.381 | Date : | Nouvembre 2011 | En ligne : | http://www.techniques-ingenieur.fr/base-documentaire/electronique-photonique-th1 [...] |
[article] Transistors et circuits intégrés à hétérostructures (III-V) [texte imprimé] / Scavennec, André, Auteur ; Delage, Sylvain, Auteur . - 2007 . - 19 p. Bibliogr. Langues : Français ( fre) in Techniques de l'ingénieur E > Vol. E2 (Trimestriel) . - 19 p. Mots-clés : | Transistors Circuits intégrés Hétérostructures | Résumé : | Le comportement des composants électroniques à semi-conducteurs est largement conditionné par la nature des interfaces ou jonctions qui en séparent les différentes parties constitutives (métalliques, diélectriques ou semi-conductrices) et par la façon dont les porteurs, électrons ou trous, longent ou traversent ces interfaces. Les jonctions semi-conducteur/semi-conducteur intervenant dans les composants et circuits, à base de transistors à effet de champ ou de transistors bipolaires, qui ont dominé jusqu'à la fin des années 1980 la microélectronique, ont longtemps été des homojonctions séparant deux régions de dopages différents d'un même semi-conducteur hôte. En pratique, ce dernier est généralement du silicium (filières NMOS, CMOS bipolaires et BiCMOS) et très rarement de l'arséniure de gallium (filière MESFET GaAs).
Au cours des années 1980, des progrès constants en matière d'élaboration des matériaux, de technologie de fabrication et de physique des structures semi-conductrices complexes ont favorisé l'émergence d'une nouvelle génération de composants microélectroniques dits à hétérojonction. Ces hétérojonctions sont des jonctions où se trouvent juxtaposés deux semi-conducteurs différents. Elles sont le plus souvent en accord ou quasi-accord de maille cristalline [cas des jonctions GaAlAs/GaAs des transistors à hétérojonction à effet de champ, appelés HEMT, et des transistors bipolaires à hétérojonction, dits HBT (§ 2.1 et 4.1)]. Mais ces hétérojonctions peuvent être aussi en léger désaccord de maille (de l'ordre de 1 % comme dans le cas des jonctions GaAlN/GaN des HEMT GaN (§ 3.1) ou Ga0,8 In0,2 As/GaAs des HEMT GaAs dits pseudomorphiques (§ 2.4.1), voire en désaccord plus important, au-delà de ce que peut supporter l'élasticité limitée du réseau cristallin, et impliquant alors des zones cristallines très disloquées [cas des structures dites métamorphiques InP/GaAs (§ 2.4.3) ainsi que des hétérostructures à base de nitrure de gallium (§ 3.1), où les différences de dimensions de mailles cristallines sont de l'ordre de quelques pour-cent entre le substrat de départ et le matériau qui constitue le cœur actif du composant].
Dans tous les cas, cette possibilité de combiner, au sein d'un même composant, des semi-conducteurs de structures de bandes d'énergie différentes apporte des degrés de liberté supplémentaires permettant de développer des composants nouveaux à performances améliorées ou à fonctionnalité originale. En effet, en sus des champs appliqués et des gradients de dopage assurant le contrôle du transport des électrons et des trous dans les composants ordinaires à homostructure semi-conductrice, le fait de pouvoir faire varier l'énergie de bande interdite dans le cas d'une hétérojonction permet des variations spatiales brutales des potentiels et des champs [cf. le puits de potentiel du HEMT utilisé pour séparer porteurs et donneurs (§ 2.1)]. De plus ces variations peuvent être différentes pour les électrons et pour les trous, introduisant ainsi une sorte de filtrage dans le transport de ces deux types de porteurs (cf. l'interface émetteur-base du HBT, § 4.1). L'exploitation de ces degrés de liberté, souvent qualifiée d'ingénierie de bande interdite, a donné lieu à un foisonnement d'innovations, tant en optoélectronique qu'en microélectronique, et ce plus particulièrement dans le cas des matériaux III-V, grâce à la richesse des combinaisons possibles d'éléments III et V, et pour bénéficier de la gamme très étendue des propriétés de transport de ces matériaux. | REFERENCE : | E 2 450v2 | DEWEY : | 621.381 | Date : | Nouvembre 2011 | En ligne : | http://www.techniques-ingenieur.fr/base-documentaire/electronique-photonique-th1 [...] |
|