Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur D. J. Robert
Documents disponibles écrits par cet auteur
Affiner la recherche3D FE analyses of buried pipeline with elbows subjected to lateral loading / T. P. Cheong in Journal of geotechnical and geoenvironmental engineering, Vol. 137 N° 10 (Octobre 2011)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 137 N° 10 (Octobre 2011) . - pp. 939-948
Titre : 3D FE analyses of buried pipeline with elbows subjected to lateral loading Type de document : texte imprimé Auteurs : T. P. Cheong, Auteur ; K. Soga, Auteur ; D. J. Robert, Auteur Année de publication : 2012 Article en page(s) : pp. 939-948 Note générale : Géotechnique Langues : Anglais (eng) Mots-clés : Pipeline Sand Finite-element analysis Soil-spring analysis Lateral loads Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : This study investigates the interaction between soil and pipeline in sand subjected to lateral ground displacements with emphasis on the peak force exerted to a bended elbow-pipe. A series of three-dimensional (3D) finite-element (FE) analyses were performed in both opening and closing modes of the elbow section for different initial pipe bending angles. To model the mechanical behavior of sands, two soil models were adopted: Mohr-Coulomb and Nor-Sand soil model. Investigations also included the effects of pipe embedment depth and soil density. Results show that the opening mode exhibits higher ultimate forces and greater localized deformations than the closing mode. Nondimensional charts that account for pipeline location, bending angle, and soil density are developed. Soil-spring pipeline analyses of an elbow-pipe were performed using modified F-δ soil-spring models based on the 3D FE results and were compared to the findings of conventional spring model analyses using the standard two-dimensional soil-spring model. Results show that the pipe strain does not change in the closing mode case. However, in the opening mode case, the pipe strain computed by the modified analysis is larger than that by the conventional analysis and the difference is more pronounced when the pipe stiffness is stiffer.
DEWEY : 624.1 ISSN : 1090-0241 En ligne : http://ascelibrary.org/gto/resource/1/jggefk/v137/i10/p939_s1?isAuthorized=no [article] 3D FE analyses of buried pipeline with elbows subjected to lateral loading [texte imprimé] / T. P. Cheong, Auteur ; K. Soga, Auteur ; D. J. Robert, Auteur . - 2012 . - pp. 939-948.
Géotechnique
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 137 N° 10 (Octobre 2011) . - pp. 939-948
Mots-clés : Pipeline Sand Finite-element analysis Soil-spring analysis Lateral loads Index. décimale : 624.1 Infrastructures.Ouvrages en terre. Fondations. Tunnels Résumé : This study investigates the interaction between soil and pipeline in sand subjected to lateral ground displacements with emphasis on the peak force exerted to a bended elbow-pipe. A series of three-dimensional (3D) finite-element (FE) analyses were performed in both opening and closing modes of the elbow section for different initial pipe bending angles. To model the mechanical behavior of sands, two soil models were adopted: Mohr-Coulomb and Nor-Sand soil model. Investigations also included the effects of pipe embedment depth and soil density. Results show that the opening mode exhibits higher ultimate forces and greater localized deformations than the closing mode. Nondimensional charts that account for pipeline location, bending angle, and soil density are developed. Soil-spring pipeline analyses of an elbow-pipe were performed using modified F-δ soil-spring models based on the 3D FE results and were compared to the findings of conventional spring model analyses using the standard two-dimensional soil-spring model. Results show that the pipe strain does not change in the closing mode case. However, in the opening mode case, the pipe strain computed by the modified analysis is larger than that by the conventional analysis and the difference is more pronounced when the pipe stiffness is stiffer.
DEWEY : 624.1 ISSN : 1090-0241 En ligne : http://ascelibrary.org/gto/resource/1/jggefk/v137/i10/p939_s1?isAuthorized=no