Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Matthew Anderson
Documents disponibles écrits par cet auteur
Affiner la rechercheAutothermal reforming of methane in a proton - conducting ceramic membrane reactor / Jay Kniep in Industrial & engineering chemistry research, Vol. 50 N° 22 (Novembre 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 22 (Novembre 2011) . - pp. 12426–12432
Titre : Autothermal reforming of methane in a proton - conducting ceramic membrane reactor Type de document : texte imprimé Auteurs : Jay Kniep, Auteur ; Matthew Anderson, Auteur ; Y. S. Lin, Auteur Année de publication : 2012 Article en page(s) : pp. 12426–12432 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Membrane reactor Ceramic materials Inorganic membrane Autothermic reactor Reforming Résumé : Endothermic steam reforming of methane for hydrogen production requires heat input with selective oxidation of methane. Dense SrCe0.75Zr0.20Tm0.05O3-δ perovskite membranes were combined with a reforming catalyst to demonstrate the feasibility of a heat-exchange membrane reactor for steam reforming of methane coupled with selective oxidation of permeated hydrogen. The reforming catalyst used was a prereduced nickel based catalyst supported on γ-Al2O3. Hydrogen produced via the steam reforming of methane or water gas shift reaction was able to diffuse through the catalyst bed and transport through the membrane. The permeated hydrogen reacted with oxygen (from air) to produce heat for the steam reforming of methane on the other side of the membrane. The membrane reactor avoids the use of an expensive air separation unit to produce pure oxygen. The influence of experimental conditions, such as temperature, gas hourly space velocity, and the steam to carbon (S/C) ratio, on the membrane reactor was investigated. SrCe0.75Zr0.20Tm0.05O3-δ showed good chemical stability in steam reforming conditions as X-ray diffraction analysis of the membrane surface exposed to steam-reforming conditions for 425 h showed only minor CeO2 formation. The experimental data demonstrate the feasibility of using a proton conducting ceramic membrane in the heat-exchange membrane reactor for steam reforming of methane coupled with selective oxidation. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24745715 [article] Autothermal reforming of methane in a proton - conducting ceramic membrane reactor [texte imprimé] / Jay Kniep, Auteur ; Matthew Anderson, Auteur ; Y. S. Lin, Auteur . - 2012 . - pp. 12426–12432.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 22 (Novembre 2011) . - pp. 12426–12432
Mots-clés : Membrane reactor Ceramic materials Inorganic membrane Autothermic reactor Reforming Résumé : Endothermic steam reforming of methane for hydrogen production requires heat input with selective oxidation of methane. Dense SrCe0.75Zr0.20Tm0.05O3-δ perovskite membranes were combined with a reforming catalyst to demonstrate the feasibility of a heat-exchange membrane reactor for steam reforming of methane coupled with selective oxidation of permeated hydrogen. The reforming catalyst used was a prereduced nickel based catalyst supported on γ-Al2O3. Hydrogen produced via the steam reforming of methane or water gas shift reaction was able to diffuse through the catalyst bed and transport through the membrane. The permeated hydrogen reacted with oxygen (from air) to produce heat for the steam reforming of methane on the other side of the membrane. The membrane reactor avoids the use of an expensive air separation unit to produce pure oxygen. The influence of experimental conditions, such as temperature, gas hourly space velocity, and the steam to carbon (S/C) ratio, on the membrane reactor was investigated. SrCe0.75Zr0.20Tm0.05O3-δ showed good chemical stability in steam reforming conditions as X-ray diffraction analysis of the membrane surface exposed to steam-reforming conditions for 425 h showed only minor CeO2 formation. The experimental data demonstrate the feasibility of using a proton conducting ceramic membrane in the heat-exchange membrane reactor for steam reforming of methane coupled with selective oxidation. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24745715