Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur M. Erdem Gunay
Documents disponibles écrits par cet auteur
Affiner la rechercheNeural network analysis of selective CO oxidation over copper - based catalysts for knowledge extraction from published data in the literature / M. Erdem Gunay in Industrial & engineering chemistry research, Vol. 50 N° 22 (Novembre 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 22 (Novembre 2011) . - pp. 12488-12500
Titre : Neural network analysis of selective CO oxidation over copper - based catalysts for knowledge extraction from published data in the literature Type de document : texte imprimé Auteurs : M. Erdem Gunay, Auteur ; Ramazan Yildirim, Auteur Année de publication : 2012 Article en page(s) : pp. 12488-12500 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Catalyst Oxidation Neural network Résumé : In this work, a database containing 1337 data points for selective CO oxidation over Cu-based catalysts was constructed from 20 research publications and used for knowledge extraction by artificial neural networks. The experimental CO conversions reported in each publication were successfully predicted by a neural network trained using the data from the remaining 19 publications unless that one publication contained unique variables. The effects and relative significances of the catalyst preparation variables (such as Cu loading, second metal additive, support type, and preparation method) and operating variables (such as reaction temperature, feed composition, and feed flow rate/catalyst weight ratio) were also determined quite successfully by the artificial neural networks. We conclude that neural network modeling can be used to extract valuable experience and knowledge accumulated in the published data and can help researchers to plan new experiments in a more effective manner. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24745722 [article] Neural network analysis of selective CO oxidation over copper - based catalysts for knowledge extraction from published data in the literature [texte imprimé] / M. Erdem Gunay, Auteur ; Ramazan Yildirim, Auteur . - 2012 . - pp. 12488-12500.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 22 (Novembre 2011) . - pp. 12488-12500
Mots-clés : Catalyst Oxidation Neural network Résumé : In this work, a database containing 1337 data points for selective CO oxidation over Cu-based catalysts was constructed from 20 research publications and used for knowledge extraction by artificial neural networks. The experimental CO conversions reported in each publication were successfully predicted by a neural network trained using the data from the remaining 19 publications unless that one publication contained unique variables. The effects and relative significances of the catalyst preparation variables (such as Cu loading, second metal additive, support type, and preparation method) and operating variables (such as reaction temperature, feed composition, and feed flow rate/catalyst weight ratio) were also determined quite successfully by the artificial neural networks. We conclude that neural network modeling can be used to extract valuable experience and knowledge accumulated in the published data and can help researchers to plan new experiments in a more effective manner. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24745722