Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur James E. Smith
Documents disponibles écrits par cet auteur
Affiner la rechercheDynamic portfolio optimization with transaction costs / Brown, David B. in Management science, Vol. 57 N° 10 (Octobre 2011)
[article]
in Management science > Vol. 57 N° 10 (Octobre 2011) . - pp. 1752-1770
Titre : Dynamic portfolio optimization with transaction costs : Heuristics and dual bounds Type de document : texte imprimé Auteurs : Brown, David B., Auteur ; James E. Smith, Auteur Année de publication : 2012 Article en page(s) : pp. 1752-1770 Note générale : Management Langues : Anglais (eng) Mots-clés : Dynamic programming Portfolio optimization Index. décimale : 658 Organisation des entreprises. Techniques du commerce Résumé : We consider the problem of dynamic portfolio optimization in a discrete-time, finite-horizon setting. Our general model considers risk aversion, portfolio constraints (e.g., no short positions), return predictability, and transaction costs. This problem is naturally formulated as a stochastic dynamic program. Unfortunately, with nonzero transaction costs, the dimension of the state space is at least as large as the number of assets, and the problem is very difficult to solve with more than one or two assets. In this paper, we consider several easy-to-compute heuristic trading strategies that are based on optimizing simpler models. We complement these heuristics with upper bounds on the performance with an optimal trading strategy. These bounds are based on the dual approach developed in Brown et al. (Brown, D. B., J. E. Smith, P. Sun. 2009. Information relaxations and duality in stochastic dynamic programs. Oper. Res. 58(4) 785–801). In this context, these bounds are given by considering an investor who has access to perfect information about future returns but is penalized for using this advance information. These heuristic strategies and bounds can be evaluated using Monte Carlo simulation. We evaluate these heuristics and bounds in numerical experiments with a risk-free asset and 3 or 10 risky assets. In many cases, the performance of the heuristic strategy is very close to the upper bound, indicating that the heuristic strategies are very nearly optimal. DEWEY : 658 ISSN : 0025-1909 En ligne : http://mansci.journal.informs.org/content/57/10/1752.abstract [article] Dynamic portfolio optimization with transaction costs : Heuristics and dual bounds [texte imprimé] / Brown, David B., Auteur ; James E. Smith, Auteur . - 2012 . - pp. 1752-1770.
Management
Langues : Anglais (eng)
in Management science > Vol. 57 N° 10 (Octobre 2011) . - pp. 1752-1770
Mots-clés : Dynamic programming Portfolio optimization Index. décimale : 658 Organisation des entreprises. Techniques du commerce Résumé : We consider the problem of dynamic portfolio optimization in a discrete-time, finite-horizon setting. Our general model considers risk aversion, portfolio constraints (e.g., no short positions), return predictability, and transaction costs. This problem is naturally formulated as a stochastic dynamic program. Unfortunately, with nonzero transaction costs, the dimension of the state space is at least as large as the number of assets, and the problem is very difficult to solve with more than one or two assets. In this paper, we consider several easy-to-compute heuristic trading strategies that are based on optimizing simpler models. We complement these heuristics with upper bounds on the performance with an optimal trading strategy. These bounds are based on the dual approach developed in Brown et al. (Brown, D. B., J. E. Smith, P. Sun. 2009. Information relaxations and duality in stochastic dynamic programs. Oper. Res. 58(4) 785–801). In this context, these bounds are given by considering an investor who has access to perfect information about future returns but is penalized for using this advance information. These heuristic strategies and bounds can be evaluated using Monte Carlo simulation. We evaluate these heuristics and bounds in numerical experiments with a risk-free asset and 3 or 10 risky assets. In many cases, the performance of the heuristic strategy is very close to the upper bound, indicating that the heuristic strategies are very nearly optimal. DEWEY : 658 ISSN : 0025-1909 En ligne : http://mansci.journal.informs.org/content/57/10/1752.abstract