Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Carolina P. Naveira-Cotta
Documents disponibles écrits par cet auteur
Affiner la rechercheCombining integral transforms and bayesian inference in the simultaneous identification of variable thermal conductivity and thermal capacity in heterogeneous media / Carolina P. Naveira-Cotta in Journal of heat transfer, Vol. 133 N° 11 (Novembre 2011)
[article]
in Journal of heat transfer > Vol. 133 N° 11 (Novembre 2011) . - pp. [111301/1-10]
Titre : Combining integral transforms and bayesian inference in the simultaneous identification of variable thermal conductivity and thermal capacity in heterogeneous media Type de document : texte imprimé Auteurs : Carolina P. Naveira-Cotta, Auteur ; Helcio R. B. Orlande, Auteur ; Renato M. Cotta, Auteur Année de publication : 2012 Article en page(s) : pp. [111301/1-10] Note générale : Physique Langues : Anglais (eng) Mots-clés : Bayes methods Composite materials Disperse systems Eigenvalues and eigenfunctions Gaussian distribution Heat conduction Inference mechanisms Inverse problems Inverse transforms Markov processes Monte Carlo methods Physics computing Specific heat Thermal conductivity Index. décimale : 536 Chaleur. Thermodynamique Résumé : This work presents the combined use of the integral transform method, for the direct problem solution, and of Bayesian inference, for the inverse problem analysis, in the simultaneous estimation of spatially variable thermal conductivity and thermal capacity for one-dimensional heat conduction within heterogeneous media. The direct problem solution is analytically obtained via integral transforms and the related eigenvalue problem is solved by the generalized integral transform technique (GITT), offering a fast, precise, and robust solution for the transient temperature field. The inverse problem analysis employs a Markov chain Monte Carlo (MCMC) method, through the implementation of the Metropolis-Hastings sampling algorithm. Instead of seeking the functions estimation in the form of local values for the thermal conductivity and capacity, an alternative approach is employed based on the eigenfunction expansion of the thermophysical properties themselves. Then, the unknown parameters become the corresponding series coefficients for the properties eigenfunction expansions. Simulated temperatures obtained via integral transforms are used in the inverse analysis, for a prescribed concentration distribution of the dispersed phase in a heterogeneous media such as particle filled composites. Available correlations for the thermal conductivity and theory of mixtures relations for the thermal capacity are employed to produce the simulated results with high precision in the direct problem solution, while eigenfunction expansions with reduced number of terms are employed in the inverse analysis itself, in order to avoid the inverse crime. Gaussian distributions were used as priors for the parameter estimation procedure. In addition, simulated results with different randomly generated errors were employed in order to test the inverse analysis robustness.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000133000011 [...] [article] Combining integral transforms and bayesian inference in the simultaneous identification of variable thermal conductivity and thermal capacity in heterogeneous media [texte imprimé] / Carolina P. Naveira-Cotta, Auteur ; Helcio R. B. Orlande, Auteur ; Renato M. Cotta, Auteur . - 2012 . - pp. [111301/1-10].
Physique
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 133 N° 11 (Novembre 2011) . - pp. [111301/1-10]
Mots-clés : Bayes methods Composite materials Disperse systems Eigenvalues and eigenfunctions Gaussian distribution Heat conduction Inference mechanisms Inverse problems Inverse transforms Markov processes Monte Carlo methods Physics computing Specific heat Thermal conductivity Index. décimale : 536 Chaleur. Thermodynamique Résumé : This work presents the combined use of the integral transform method, for the direct problem solution, and of Bayesian inference, for the inverse problem analysis, in the simultaneous estimation of spatially variable thermal conductivity and thermal capacity for one-dimensional heat conduction within heterogeneous media. The direct problem solution is analytically obtained via integral transforms and the related eigenvalue problem is solved by the generalized integral transform technique (GITT), offering a fast, precise, and robust solution for the transient temperature field. The inverse problem analysis employs a Markov chain Monte Carlo (MCMC) method, through the implementation of the Metropolis-Hastings sampling algorithm. Instead of seeking the functions estimation in the form of local values for the thermal conductivity and capacity, an alternative approach is employed based on the eigenfunction expansion of the thermophysical properties themselves. Then, the unknown parameters become the corresponding series coefficients for the properties eigenfunction expansions. Simulated temperatures obtained via integral transforms are used in the inverse analysis, for a prescribed concentration distribution of the dispersed phase in a heterogeneous media such as particle filled composites. Available correlations for the thermal conductivity and theory of mixtures relations for the thermal capacity are employed to produce the simulated results with high precision in the direct problem solution, while eigenfunction expansions with reduced number of terms are employed in the inverse analysis itself, in order to avoid the inverse crime. Gaussian distributions were used as priors for the parameter estimation procedure. In addition, simulated results with different randomly generated errors were employed in order to test the inverse analysis robustness.
DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000133000011 [...]