Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur N. Iswaran
Documents disponibles écrits par cet auteur
Affiner la rechercheConflict analysis using Bayesian neural networks and generalized linear models / N. Iswaran in Journal of the operational research society (JORS), Vol. 61 N° 2 (Fevrier 2010)
[article]
in Journal of the operational research society (JORS) > Vol. 61 N° 2 (Fevrier 2010) . - pp. 332–341
Titre : Conflict analysis using Bayesian neural networks and generalized linear models Type de document : texte imprimé Auteurs : N. Iswaran, Auteur ; D. F. Percy, Auteur Année de publication : 2011 Article en page(s) : pp. 332–341 Note générale : Recherche opérationnelle Langues : Anglais (eng) Mots-clés : Bayesian inference Conflict analysis Generalized linear models Neural networks Index. décimale : 001.424 Résumé : The study of conflict analysis has recently become more important due to current world events. Despite numerous quantitative analyses on the study of international conflict, the statistical results are often inconsistent with each other. The causes of conflict, however, are often stable and replicable when the prior probability of conflict is large. As there has been much conjecture about neural networks being able to cope with the complexity of such interconnected and interdependent data, we formulate a statistical version of a neural network model and compare the results to those of conventional statistical models. We then show how to apply Bayesian methods to the preferred model, with the aim of finding the posterior probabilities of conflict outbreak and hence being able to plan for conflict prevention. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v61/n2/abs/jors2008183a.html [article] Conflict analysis using Bayesian neural networks and generalized linear models [texte imprimé] / N. Iswaran, Auteur ; D. F. Percy, Auteur . - 2011 . - pp. 332–341.
Recherche opérationnelle
Langues : Anglais (eng)
in Journal of the operational research society (JORS) > Vol. 61 N° 2 (Fevrier 2010) . - pp. 332–341
Mots-clés : Bayesian inference Conflict analysis Generalized linear models Neural networks Index. décimale : 001.424 Résumé : The study of conflict analysis has recently become more important due to current world events. Despite numerous quantitative analyses on the study of international conflict, the statistical results are often inconsistent with each other. The causes of conflict, however, are often stable and replicable when the prior probability of conflict is large. As there has been much conjecture about neural networks being able to cope with the complexity of such interconnected and interdependent data, we formulate a statistical version of a neural network model and compare the results to those of conventional statistical models. We then show how to apply Bayesian methods to the preferred model, with the aim of finding the posterior probabilities of conflict outbreak and hence being able to plan for conflict prevention. DEWEY : 001.424 ISSN : 0160-5682 En ligne : http://www.palgrave-journals.com/jors/journal/v61/n2/abs/jors2008183a.html