| [article] 
					| Titre : | Bayesian forecasting with the Holt–Winters model |  
					| Type de document : | texte imprimé |  
					| Auteurs : | J. D. Bermúdez, Auteur ; J. V. Segura, Auteur ; E. Vercher, Auteur |  
					| Année de publication : | 2011 |  
					| Article en page(s) : | pp. 164–171 |  
					| Note générale : | Recherche opérationnelle |  
					| Langues : | Anglais (eng) |  
					| Mots-clés : | Forecasting Time series Prediction intervals Simulation M3-competition |  
					| Index. décimale : | 001.424 |  
					| Résumé : | Exponential smoothing methods are widely used as forecasting techniques in inventory systems and business planning, where reliable prediction intervals are also required for a large number of series. This paper describes a Bayesian forecasting approach based on the Holt–Winters model, which allows obtaining accurate prediction intervals. We show how to build them incorporating the uncertainty due to the smoothing unknowns using a linear heteroscedastic model. That linear formulation simplifies obtaining the posterior distribution on the unknowns; a random sample from such posterior, which is not analytical, is provided using an acceptance sampling procedure and a Monte Carlo approach gives the predictive distributions. On the basis of this scheme, point-wise forecasts and prediction intervals are obtained. The accuracy of the proposed Bayesian forecasting approach for building prediction intervals is tested using the 3003 time series from the M3-competition. |  
					| DEWEY : | 001.424 |  
					| ISSN : | 0160-5682 |  
					| En ligne : | http://www.palgrave-journals.com/jors/journal/v61/n1/abs/jors2008152a.html |  in Journal of the operational research society (JORS) > Vol. 61 N° 1 (Issue spécial)  (Janvier 2010) . - pp. 164–171
 [article] Bayesian forecasting with the Holt–Winters model [texte imprimé] / J. D. Bermúdez , Auteur ; J. V. Segura , Auteur ; E. Vercher , Auteur . - 2011 . - pp. 164–171. Recherche opérationnelleLangues  : Anglais (eng )in Journal of the operational research society (JORS)  > Vol. 61 N° 1 (Issue spécial)  (Janvier 2010)  . - pp. 164–171 
					| Mots-clés : | Forecasting Time series Prediction intervals Simulation M3-competition |  
					| Index. décimale : | 001.424 |  
					| Résumé : | Exponential smoothing methods are widely used as forecasting techniques in inventory systems and business planning, where reliable prediction intervals are also required for a large number of series. This paper describes a Bayesian forecasting approach based on the Holt–Winters model, which allows obtaining accurate prediction intervals. We show how to build them incorporating the uncertainty due to the smoothing unknowns using a linear heteroscedastic model. That linear formulation simplifies obtaining the posterior distribution on the unknowns; a random sample from such posterior, which is not analytical, is provided using an acceptance sampling procedure and a Monte Carlo approach gives the predictive distributions. On the basis of this scheme, point-wise forecasts and prediction intervals are obtained. The accuracy of the proposed Bayesian forecasting approach for building prediction intervals is tested using the 3003 time series from the M3-competition. |  
					| DEWEY : | 001.424 |  
					| ISSN : | 0160-5682 |  
					| En ligne : | http://www.palgrave-journals.com/jors/journal/v61/n1/abs/jors2008152a.html | 
 |