Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Zhao-Yang Chen
Documents disponibles écrits par cet auteur
Affiner la rechercheGas hydrate formation process for capture of carbon dioxide from fuel gas mixture / Xiao-Sen Li in Industrial & engineering chemistry research, Vol. 49 N° 22 (Novembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 22 (Novembre 2010) . - pp. 11614–11619
Titre : Gas hydrate formation process for capture of carbon dioxide from fuel gas mixture Type de document : texte imprimé Auteurs : Xiao-Sen Li, Auteur ; Zhi-Ming Xia, Auteur ; Zhao-Yang Chen, Auteur Année de publication : 2011 Article en page(s) : pp. 11614–11619 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Gas Carbon Dioxide Résumé : To determine the suitable operating conditions for the hydrate-based CO2 separation process from a fuel gas mixture, the hydrate nucleation and growth kinetics of the simulated fuel gas (39.2 mol % CO2/H2 gas mixture) in the presence of tetra-n-butyl ammonium bromide (TBAB) are investigated. The experiments were conducted at the TBAB concentration range of 0.14−1.00 mol %, the temperature range of 275.15−282.45 K, the driving force range of 1.00−4.50 MPa, the gas/liquid phase ratio range of 0.86−6.47, and the hydrate growth time of 15−120 min. It is found that the addition of TBAB not only shortens the induction time and accelerates the hydrate growth rate, but also enhances CO2 encaged into the hydrate. However, the number of total moles of gas consumed and the number of moles of CO2 transferred into the hydrate slurry phase decrease with the increase of the TBAB concentration when the TBAB concentration is above 0.29 mol %. The induction time reduces, and the number of moles of gas consumed, the hydrate formation rate, and the number of moles of CO2 encaged into hydrate phase increase with the increase of the driving force. However, when the driving force is more than 2.5 MPa, H2 prefers to go into the hydrate phase with the increase of the driving force, as compared to CO2. In addition, the temperature has little effect on the hydrate formation process. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100851u [article] Gas hydrate formation process for capture of carbon dioxide from fuel gas mixture [texte imprimé] / Xiao-Sen Li, Auteur ; Zhi-Ming Xia, Auteur ; Zhao-Yang Chen, Auteur . - 2011 . - pp. 11614–11619.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 22 (Novembre 2010) . - pp. 11614–11619
Mots-clés : Gas Carbon Dioxide Résumé : To determine the suitable operating conditions for the hydrate-based CO2 separation process from a fuel gas mixture, the hydrate nucleation and growth kinetics of the simulated fuel gas (39.2 mol % CO2/H2 gas mixture) in the presence of tetra-n-butyl ammonium bromide (TBAB) are investigated. The experiments were conducted at the TBAB concentration range of 0.14−1.00 mol %, the temperature range of 275.15−282.45 K, the driving force range of 1.00−4.50 MPa, the gas/liquid phase ratio range of 0.86−6.47, and the hydrate growth time of 15−120 min. It is found that the addition of TBAB not only shortens the induction time and accelerates the hydrate growth rate, but also enhances CO2 encaged into the hydrate. However, the number of total moles of gas consumed and the number of moles of CO2 transferred into the hydrate slurry phase decrease with the increase of the TBAB concentration when the TBAB concentration is above 0.29 mol %. The induction time reduces, and the number of moles of gas consumed, the hydrate formation rate, and the number of moles of CO2 encaged into hydrate phase increase with the increase of the driving force. However, when the driving force is more than 2.5 MPa, H2 prefers to go into the hydrate phase with the increase of the driving force, as compared to CO2. In addition, the temperature has little effect on the hydrate formation process. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie100851u